Kveik Brewing Yeasts Demonstrate Wide Flexibility in Beer Fermentation Temperature Tolerance and Exhibit Enhanced Trehalose Accumulation.
Saccharomyces
ale
brewing
fermentation
kveik
temperature
trehalose
Journal
Frontiers in microbiology
ISSN: 1664-302X
Titre abrégé: Front Microbiol
Pays: Switzerland
ID NLM: 101548977
Informations de publication
Date de publication:
2022
2022
Historique:
received:
26
07
2021
accepted:
11
02
2022
entrez:
4
4
2022
pubmed:
5
4
2022
medline:
5
4
2022
Statut:
epublish
Résumé
Traditional Norwegian Farmhouse ale yeasts, also known as kveik, have captured the attention of the brewing community in recent years. Kveik were recently reported as fast fermenting thermo- and ethanol tolerant yeasts with the capacity to produce a variety of interesting flavor metabolites. They are a genetically distinct group of domesticated beer yeasts of admixed origin with one parent from the "Beer 1" clade and the other unknown. While kveik are known to ferment wort efficiently at warmer temperatures, their range of fermentation temperatures and corresponding fermentation efficiencies, remain uncharacterized. In addition, the characteristics responsible for their increased thermotolerance remain largely unknown. Here we demonstrate variation in kveik strains at a wide range of fermentation temperatures and show not all kveik strains are equal in fermentation performance and stress tolerance. Furthermore, we uncovered an increased capacity of kveik strains to accumulate intracellular trehalose, which likely contributes to their increased thermo- and ethanol tolerances. Taken together our results present a clearer picture of the future opportunities presented by Norwegian kveik yeasts and offer further insight into their applications in brewing.
Identifiants
pubmed: 35369501
doi: 10.3389/fmicb.2022.747546
pmc: PMC8966892
doi:
Types de publication
Journal Article
Langues
eng
Pagination
747546Informations de copyright
Copyright © 2022 Foster, Tyrawa, Ozsahin, Lubberts, Krogerus, Preiss and van der Merwe.
Déclaration de conflit d'intérêts
RP was employed by Escarpment Laboratories Inc., KK was employed by VTT Technical Research Centre Ltd. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Biochem Mol Biol Int. 1996 Feb;38(2):259-65
pubmed: 8850521
Eur J Biochem. 1994 Jan 15;219(1-2):187-93
pubmed: 8306985
Bioinformatics. 2011 Jan 15;27(2):268-9
pubmed: 21081509
J Bacteriol. 1980 Sep;143(3):1384-94
pubmed: 6997270
Appl Environ Microbiol. 2005 Dec;71(12):7846-57
pubmed: 16332759
Bioinformatics. 2011 Aug 1;27(15):2156-8
pubmed: 21653522
FEMS Microbiol Rev. 2001 Jan;25(1):125-45
pubmed: 11152943
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
mBio. 2015 Jul 21;6(4):e00431
pubmed: 26199325
FEMS Yeast Res. 2009 Dec;9(8):1208-16
pubmed: 19799639
Appl Environ Microbiol. 2005 Sep;71(9):5044-9
pubmed: 16151085
Appl Environ Microbiol. 2004 May;70(5):2771-8
pubmed: 15128531
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
J Bacteriol. 1995 Oct;177(19):5440-6
pubmed: 7559327
Mol Microbiol. 1995 Sep;17(6):1093-107
pubmed: 8594329
IUBMB Life. 2008 Sep;60(9):609-19
pubmed: 18543277
Microbiol Rev. 1984 Mar;48(1):42-59
pubmed: 6325857
Glycobiology. 2003 Apr;13(4):17R-27R
pubmed: 12626396
Microbiology (Reading). 1996 Jul;142 ( Pt 7):1775-82
pubmed: 8757741
Appl Microbiol Biotechnol. 2019 Sep;103(18):7597-7615
pubmed: 31346683
Mol Microbiol. 2000 Jan;35(2):397-406
pubmed: 10652100
EMBO J. 1995 Apr 3;14(7):1360-71
pubmed: 7729414
Mol Biol Evol. 2018 Aug 1;35(8):1823-1839
pubmed: 29684163
Yeast. 2002 Sep 15;19(12):1015-27
pubmed: 12210897
FEMS Yeast Res. 2001 Apr;1(1):73-8
pubmed: 12702465
Food Microbiol. 2021 Apr;94:103640
pubmed: 33279066
Bioinformatics. 2018 Sep 1;34(17):i884-i890
pubmed: 30423086
Trends Biochem Sci. 1995 Jan;20(1):3-10
pubmed: 7878741
Int J Food Microbiol. 1997 Mar 3;34(3):267-77
pubmed: 9039572
Proc Natl Acad Sci U S A. 2015 May 12;112(19):6122-7
pubmed: 25918381
FEMS Yeast Res. 2003 Mar;3(1):119-26
pubmed: 12702255
Front Microbiol. 2018 Sep 12;9:2137
pubmed: 30258422
Bioinformatics. 2018 Mar 1;34(5):867-868
pubmed: 29096012
FEMS Microbiol Lett. 1995 Dec 15;134(2-3):121-7
pubmed: 8586257
Biochem J. 2012 May 1;443(3):663-70
pubmed: 22320399
Biochim Biophys Acta. 1998 Jan 8;1379(1):118-28
pubmed: 9468339
Appl Environ Microbiol. 2008 Feb;74(3):605-14
pubmed: 18065618
Biochim Biophys Acta. 2008 Dec;1780(12):1408-11
pubmed: 18601980
Fly (Austin). 2012 Apr-Jun;6(2):80-92
pubmed: 22728672
Biochim Biophys Acta. 2014 Jun;1840(6):1646-50
pubmed: 24380875
FEBS Lett. 1997 Aug 4;412(3):615-20
pubmed: 9276477
Appl Environ Microbiol. 2008 Mar;74(5):1494-501
pubmed: 18203856
FEMS Yeast Res. 2018 Sep 1;18(6):
pubmed: 30007297
PLoS Genet. 2015 Nov 06;11(11):e1005635
pubmed: 26545090
Proc Natl Acad Sci U S A. 1996 May 14;93(10):5116-21
pubmed: 8643537
Trends Biotechnol. 1998 Nov;16(11):460-8
pubmed: 9830154
J Biol Chem. 1980 Mar 10;255(5):2137-45
pubmed: 6243658
J Biol Chem. 2012 Dec 28;287(53):44130-42
pubmed: 23155055
FEBS Lett. 1995 Mar 6;360(3):286-90
pubmed: 7883049
PLoS One. 2010 Mar 10;5(3):e9490
pubmed: 20224823
FEMS Yeast Res. 2009 Feb;9(1):52-62
pubmed: 19016884
Cell. 2016 Sep 8;166(6):1397-1410.e16
pubmed: 27610566
Eur J Biochem. 1994 Jan 15;219(1-2):179-86
pubmed: 8306984
Mol Cell Biol. 1987 Apr;7(4):1371-7
pubmed: 3037314
Genetics. 2011 Oct;189(2):507-19
pubmed: 21840858
Biochem Mol Biol Int. 1995 Aug;36(6):1217-23
pubmed: 8535293
Curr Opin Biotechnol. 2018 Feb;49:148-155
pubmed: 28869826
Yeast. 1999 Feb;15(3):191-203
pubmed: 10077186
Curr Genet. 2015 Aug;61(3):263-74
pubmed: 25209979
Mol Biosyst. 2011 Jan;7(1):139-49
pubmed: 20963216
Biochim Biophys Acta. 1994 Jul 6;1200(2):155-60
pubmed: 8031835
Curr Genet. 2016 Aug;62(3):475-80
pubmed: 26758993
Bioinformatics. 2018 Sep 15;34(18):3094-3100
pubmed: 29750242
Bioinformatics. 2015 Jun 15;31(12):2032-4
pubmed: 25697820
Annu Rev Biochem. 1986;55:1151-91
pubmed: 2427013
J Biol Chem. 1989 Oct 15;264(29):17583-8
pubmed: 2507544