Second-Harmonic Enhancement from a Nonlinear Plasmonic Metasurface Coupled to an Optical Waveguide.

collective scattering guided lattice resonance guided-mode resonance metasurface nonlinear waveguide

Journal

Nano letters
ISSN: 1530-6992
Titre abrégé: Nano Lett
Pays: United States
ID NLM: 101088070

Informations de publication

Date de publication:
13 Apr 2022
Historique:
pubmed: 5 4 2022
medline: 5 4 2022
entrez: 4 4 2022
Statut: ppublish

Résumé

Metasurfaces are commonly constructed from two-dimensional arrangements of nanoresonators. Coherent coupling of the nanoresonators through extended photonic modes of the metasurface results in a modified collective optical response, and enhances light-matter interactions. Here we experimentally demonstrate that strong collective resonances can arise also from coupling the metasurface to an optical waveguide. We explore the effect this waveguide-assisted collective interaction has on second-harmonic generation from the hybrid system. Our measurements indicate an enhancement factor of 8 for the transmitted second harmonic in comparison to incoherent collective scattering. In addition, complementary simulations predict about a 100-fold enhancement for the second harmonic that remains confined inside the waveguide. The ability to control the hybrid modes by the waveguide's design provides broader control over the formation of the collective interaction and new tools to tailor the nonlinear interactions. Our findings pave a promising direction to realize nonlinear photonic circuits with metasurfaces.

Identifiants

pubmed: 35369689
doi: 10.1021/acs.nanolett.1c04584
pmc: PMC9011386
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2712-2717

Références

Acc Chem Res. 2019 Sep 17;52(9):2548-2558
pubmed: 31465203
Opt Express. 2013 Feb 25;21(4):4250-62
pubmed: 23481959
Opt Express. 2013 Jan 28;21(2):2012-7
pubmed: 23389182
Opt Lett. 2016 Jun 15;41(12):2684-7
pubmed: 27304263
Nat Mater. 2015 Apr;14(4):379-83
pubmed: 25664451
Nat Nanotechnol. 2020 Nov;15(11):956-961
pubmed: 32807879
Nano Lett. 2018 Feb 14;18(2):1104-1109
pubmed: 29369641
Nano Lett. 2018 Dec 12;18(12):7709-7714
pubmed: 30423245
Opt Express. 2015 Nov 30;23(24):30695-700
pubmed: 26698701
Phys Rev Lett. 2017 Jun 16;118(24):243904
pubmed: 28665641
Phys Rev Lett. 2003 Oct 31;91(18):183901
pubmed: 14611284
Appl Opt. 1993 May 10;32(14):2606-13
pubmed: 20820422
Science. 2006 Jul 28;313(5786):502-4
pubmed: 16873661
ACS Photonics. 2020 Dec 16;7(12):3286-3290
pubmed: 33363248
Opt Express. 2012 Jan 16;20(2):1392-405
pubmed: 22274484
Nat Commun. 2016 Aug 22;7:12533
pubmed: 27545581
Opt Express. 2016 Jul 25;24(15):16923-33
pubmed: 27464144

Auteurs

Tsafrir Abir (T)

Department of Condensed Matter Physics, School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6779801, Israel.
Department of Physical Electronics, School of Electrical Engineering, Tel-Aviv University, Tel Aviv 6779801, Israel.
Center for Light-Matter Interaction, Tel-Aviv University, Tel Aviv 6779801, Israel.

Mai Tal (M)

Department of Condensed Matter Physics, School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6779801, Israel.
Department of Physical Electronics, School of Electrical Engineering, Tel-Aviv University, Tel Aviv 6779801, Israel.
Center for Light-Matter Interaction, Tel-Aviv University, Tel Aviv 6779801, Israel.

Tal Ellenbogen (T)

Department of Physical Electronics, School of Electrical Engineering, Tel-Aviv University, Tel Aviv 6779801, Israel.
Center for Light-Matter Interaction, Tel-Aviv University, Tel Aviv 6779801, Israel.

Classifications MeSH