KMSubtraction: reconstruction of unreported subgroup survival data utilizing published Kaplan-Meier survival curves.
Journal
BMC medical research methodology
ISSN: 1471-2288
Titre abrégé: BMC Med Res Methodol
Pays: England
ID NLM: 100968545
Informations de publication
Date de publication:
03 04 2022
03 04 2022
Historique:
received:
04
12
2021
accepted:
25
02
2022
entrez:
4
4
2022
pubmed:
5
4
2022
medline:
6
4
2022
Statut:
epublish
Résumé
Data from certain subgroups of clinical interest may not be presented in primary manuscripts or conference abstract presentations. In an effort to enable secondary data analyses, we propose a workflow to retrieve unreported subgroup survival data from published Kaplan-Meier (KM) plots. We developed KMSubtraction, an R-package that retrieves patients from unreported subgroups by matching participants on KM plots of the overall cohort to participants on KM plots of a known subgroup with follow-up time. By excluding matched patients, the opposing unreported subgroup may be retrieved. Reproducibility and limits of error of the KMSubtraction workflow were assessed by comparing unmatched patients against the original survival data of subgroups from published datasets and simulations. Monte Carlo simulations were utilized to evaluate the limits of error of KMSubtraction. The validation exercise found no material systematic error and demonstrates the robustness of KMSubtraction in deriving unreported subgroup survival data. Limits of error were small and negligible on marginal Cox proportional hazard models comparing reconstructed and original survival data of unreported subgroups. Extensive Monte Carlo simulations demonstrate that datasets with high reported subgroup proportion (r = 0.467, p < 0.001), small dataset size (r = - 0.374, p < 0.001) and high proportion of missing data in the unreported subgroup (r = 0.553, p < 0.001) were associated with uncertainty are likely to yield high limits of error with KMSubtraction. KMSubtraction demonstrates robustness in deriving survival data from unreported subgroups. The limits of error of KMSubtraction derived from converged Monte Carlo simulations may guide the interpretation of reconstructed survival data of unreported subgroups.
Sections du résumé
BACKGROUND
Data from certain subgroups of clinical interest may not be presented in primary manuscripts or conference abstract presentations. In an effort to enable secondary data analyses, we propose a workflow to retrieve unreported subgroup survival data from published Kaplan-Meier (KM) plots.
METHODS
We developed KMSubtraction, an R-package that retrieves patients from unreported subgroups by matching participants on KM plots of the overall cohort to participants on KM plots of a known subgroup with follow-up time. By excluding matched patients, the opposing unreported subgroup may be retrieved. Reproducibility and limits of error of the KMSubtraction workflow were assessed by comparing unmatched patients against the original survival data of subgroups from published datasets and simulations. Monte Carlo simulations were utilized to evaluate the limits of error of KMSubtraction.
RESULTS
The validation exercise found no material systematic error and demonstrates the robustness of KMSubtraction in deriving unreported subgroup survival data. Limits of error were small and negligible on marginal Cox proportional hazard models comparing reconstructed and original survival data of unreported subgroups. Extensive Monte Carlo simulations demonstrate that datasets with high reported subgroup proportion (r = 0.467, p < 0.001), small dataset size (r = - 0.374, p < 0.001) and high proportion of missing data in the unreported subgroup (r = 0.553, p < 0.001) were associated with uncertainty are likely to yield high limits of error with KMSubtraction.
CONCLUSION
KMSubtraction demonstrates robustness in deriving survival data from unreported subgroups. The limits of error of KMSubtraction derived from converged Monte Carlo simulations may guide the interpretation of reconstructed survival data of unreported subgroups.
Identifiants
pubmed: 35369867
doi: 10.1186/s12874-022-01567-z
pii: 10.1186/s12874-022-01567-z
pmc: PMC8978435
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
93Informations de copyright
© 2022. The Author(s).
Références
Lancet. 1986 Feb 8;1(8476):307-10
pubmed: 2868172
J Clin Oncol. 2022 Feb 1;40(4):392-402
pubmed: 34860570
JAMA Oncol. 2020 Oct 1;6(10):1571-1580
pubmed: 32880601
J Clin Oncol. 2019 Nov 20;37(33):3066-3068
pubmed: 31550189
BMC Med Res Methodol. 2012 Feb 01;12:9
pubmed: 22297116
BMC Med Res Methodol. 2013 Mar 06;13:33
pubmed: 23496923
Lancet. 2021 May 15;397(10287):1830-1841
pubmed: 33965067
BMC Med Res Methodol. 2013 Dec 07;13:152
pubmed: 24314264
Nat Rev Genet. 2016 Aug 16;17(9):507-22
pubmed: 27528417
BMC Med Res Methodol. 2021 Jun 1;21(1):111
pubmed: 34074267
Ann Intern Med. 1995 Mar 1;122(5):321-6
pubmed: 7847642
Stat Sci. 2010 Feb 1;25(1):1-21
pubmed: 20871802
N Engl J Med. 2019 Nov 21;381(21):2020-2031
pubmed: 31562796
J Vasc Interv Radiol. 2021 Nov;32(11):1536-1545.e38
pubmed: 34166803
Multivariate Behav Res. 2011 Feb 7;46(1):90-118
pubmed: 26771582
Clin Cancer Res. 2021 Nov 1;27(21):5753-5756
pubmed: 34117032
Lancet. 2021 Jul 3;398(10294):27-40
pubmed: 34102137
Cancer Treat Rev. 2020 Jun;86:102019
pubmed: 32251926
Lancet. 2021 Aug 28;398(10302):759-771
pubmed: 34454674