Modelling and Prevention of Acute Kidney Injury through Ischemia and Reperfusion in a Combined Human Renal Proximal Tubule/Blood Vessel-on-a-Chip.

AKI AKI and ICU nephrology basic science coculture in vitro kidney-on-a-chip prevention of renal ischemia damage proximal tubule renal ischemia

Journal

Kidney360
ISSN: 2641-7650
Titre abrégé: Kidney360
Pays: United States
ID NLM: 101766381

Informations de publication

Date de publication:
24 02 2022
Historique:
received: 01 06 2021
accepted: 29 10 2021
entrez: 4 4 2022
pubmed: 5 4 2022
medline: 8 4 2022
Statut: epublish

Résumé

Renal ischemia/reperfusion injury (rIRI) is one of the major causes of AKI. Although animal models are suitable for investigating systemic symptoms of AKI, they are limited in translatability. Human We advanced the current renal proximal tubule-on-a-chip model to a coculture model with a perfused endothelial vessel separated by an extracellular matrix. The coculture was characterized for its three-dimensional structure, protein expression, and response to nephrotoxins. Then, rIRI was captured through control of oxygen levels, nutrient availability, and perfusion flow settings. Injury was quantified through morphologic assessment, caspase-3/7 activation, and cell viability. The combination of low oxygen, reduced glucose, and interrupted flow was potent to disturb the proximal tubules. This effect was strongly amplified upon reperfusion. Endothelial vessels were less sensitive to the ischemia-reperfusion parameters. Adenosine treatment showed a protective effect on the disruption of the epithelium and on the caspase-3/7 activation. A human

Sections du résumé

Background
Renal ischemia/reperfusion injury (rIRI) is one of the major causes of AKI. Although animal models are suitable for investigating systemic symptoms of AKI, they are limited in translatability. Human
Methods
We advanced the current renal proximal tubule-on-a-chip model to a coculture model with a perfused endothelial vessel separated by an extracellular matrix. The coculture was characterized for its three-dimensional structure, protein expression, and response to nephrotoxins. Then, rIRI was captured through control of oxygen levels, nutrient availability, and perfusion flow settings. Injury was quantified through morphologic assessment, caspase-3/7 activation, and cell viability.
Results
The combination of low oxygen, reduced glucose, and interrupted flow was potent to disturb the proximal tubules. This effect was strongly amplified upon reperfusion. Endothelial vessels were less sensitive to the ischemia-reperfusion parameters. Adenosine treatment showed a protective effect on the disruption of the epithelium and on the caspase-3/7 activation.
Conclusions
A human

Identifiants

pubmed: 35373131
doi: 10.34067/KID.0003622021
pii: 02200512-202202000-00008
pmc: PMC8967632
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

217-231

Commentaires et corrections

Type : CommentIn

Informations de copyright

Copyright © 2022 by the American Society of Nephrology.

Déclaration de conflit d'intérêts

L. Gijzen, H.L. Lanz, L.M. Tool, R. van Vught, M.K. Vormann, and P. Vulto are employees of MIMETAS BV, The Netherlands, which is marketing the OrganoPlate. T. Hankemeier and P. Vulto are shareholders of that same company. OrganoPlate is a trademark of MIMETAS BV. All remaining authors have nothing to disclose.

Références

Zuk A, Bonventre JV: Acute kidney injury. Annu Rev Med 67: 293–307, 2016 https://doi.org/10.1146/annurev-med-050214-013407
doi: 10.1146/annurev-med-050214-013407
Lewington AJP, Cerdá J, Mehta RL: Raising awareness of acute kidney injury: A global perspective of a silent killer. Kidney Int 84: 457–467, 2013 https://doi.org/10.1038/ki.2013.153
doi: 10.1038/ki.2013.153
Basile DP, Anderson MD, Sutton TA: Pathophysiology of acute kidney injury. Compr Physiol 2: 1303–1353, 2012 https://doi.org/10.1002/cphy.c110041
doi: 10.1002/cphy.c110041
Perazella MA: Renal vulnerability to drug toxicity. Clin J Am Soc Nephrol 4: 1275–1283, 2009 https://doi.org/10.2215/CJN.02050309
doi: 10.2215/CJN.02050309
Soltoff SP: ATP and the regulation of renal cell function. Annu Rev Physiol 48: 9–31, 1986 https://doi.org/10.1146/annurev.ph.48.030186.000301
doi: 10.1146/annurev.ph.48.030186.000301
Hansell P, Welch WJ, Blantz RC, Palm F: Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension. Clin Exp Pharmacol Physiol 40: 123–137, 2013 https://doi.org/10.1111/1440-1681.12034
doi: 10.1111/1440-1681.12034
Makris K, Spanou L: Acute kidney injury: Definition, pathophysiology and clinical phenotypes. Clin Biochem Rev 37, 85–98, 2016
Bonventre JV, Yang L: Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 121: 4210–4221, 2011 https://doi.org/10.1172/JCI45161
doi: 10.1172/JCI45161
Malek M, Nematbakhsh M: Renal ischemia/reperfusion injury; From pathophysiology to treatment. J Renal Inj Prev 4: 20–27, 2015 https://doi.org/10.12861/jrip.2015.06
doi: 10.12861/jrip.2015.06
Kinsey GR, Li L, Okusa MD: Inflammation in acute kidney injury. Nephron Exp Nephrol 109: e102–e107, 2008 https://doi.org/10.1159/000142934
doi: 10.1159/000142934
Nadim MK, Forni LG, Mehta RL, Connor MJ Jr, Liu KD, Ostermann M, Rimmelé T, Zarbock A, Bell S, Bihorac A, Cantaluppi V, Hoste E, Husain-Syed F, Germain MJ, Goldstein SL, Gupta S, Joannidis M, Kashani K, Koyner JL, Legrand M, Lumlertgul N, Mohan S, Pannu N, Peng Z, Perez-Fernandez XL, Pickkers P, Prowle J, Reis T, Srisawat N, Tolwani A, Vijayan A, Villa G, Yang L, Ronco C, Kellum JA: COVID-19-associated acute kidney injury: Consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup [published correction appears in Nat Rev Nephrol 16: 765, 2020 10.1038/s41581-020-00372-5]. Nat Rev Nephrol 16: 747–764, 2020 https://doi.org/10.1038/s41581-020-00356-5
doi: 10.1038/s41581-020-00356-5
Lieberthal W, Nigam SK: Acute renal failure. II. Experimental models of acute renal failure: imperfect but indispensable. Am J Physiol Renal Physiol 278: F1–F12, 2000 https://doi.org/10.1152/ajprenal.2000.278.1.F1
doi: 10.1152/ajprenal.2000.278.1.F1
Skrypnyk NI, Siskind LJ, Faubel S, de Caestecker MP: Bridging translation for acute kidney injury with better preclinical modeling of human disease. Am J Physiol Renal Physiol 310: F972–F984, 2016 https://doi.org/10.1152/ajprenal.00552.2015
doi: 10.1152/ajprenal.00552.2015
Russ AL, Haberstroh KM, Rundell AE: Experimental strategies to improve in vitro models of renal ischemia. Exp Mol Pathol 83: 143–159, 2007 https://doi.org/10.1016/j.yexmp.2007.03.002
doi: 10.1016/j.yexmp.2007.03.002
van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T: Microfluidic 3D cell culture: From tools to tissue models. Curr Opin Biotechnol 35: 118–126, 2015 https://doi.org/10.1016/j.copbio.2015.05.002
doi: 10.1016/j.copbio.2015.05.002
Wilmer MJ, Ng CP, Lanz HL, Vulto P, Suter-Dick L, Masereeuw R: Kidney-on-a-chip technology for drug-induced nephrotoxicity screening. Trends Biotechnol 34: 156–170, 2016 https://doi.org/10.1016/j.tibtech.2015.11.001
doi: 10.1016/j.tibtech.2015.11.001
Van Norman GA: Limitations of animal studies for predicting toxicity in clinical trials: Is it time to rethink our current approach? JACC Basic Transl Sci 4: 845–854, 2019 https://doi.org/10.1016/j.jacbts.2019.10.008
doi: 10.1016/j.jacbts.2019.10.008
Marx U, Akabane T, Andersson TB, Baker E, Beilmann M, Beken S, Brendler-Schwaab S, Cirit M, David R, Dehne EM, Durieux I, Ewart L, Fitzpatrick SC, Frey O, Fuchs F, Griffith LG, Hamilton GA, Hartung T, Hoeng J, Hogberg H, Hughes DJ, Ingber DE, Iskandar A, Kanamori T, Kojima H, Kuehnl J, Leist M, Li B, Loskill P, Mendrick DL, Neumann T, Pallocca G, Rusyn I, Smirnova L, Steger-Hartmann T, Tagle DA, Tonevitsky A, Tsyb S, Trapecar M, Van de Water B, Van den Eijnden-van Raaij J, Vulto P, Watanabe K, Wolf A, Zhou X, Roth A: Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development. ALTEX 37: 365–394, 2020 https://doi.org/10.14573/altex.2001241
doi: 10.14573/altex.2001241
Tetsuka K, Ohbuchi M, Kawabe T, Goto T, Kiyonaga F, Takama K, Yamazaki S, Fujimori A: Reconstituted human organ models as a translational tool for human organ response: Definition, expectations, cases, and strategies for implementation in drug discovery and development. Biol Pharm Bull 43: 375–383, 2020 https://doi.org/10.1248/bpb.b19-01070
doi: 10.1248/bpb.b19-01070
Lloyd SG, Wang P, Zeng H, Chatham JC: Impact of low-flow ischemia on substrate oxidation and glycolysis in the isolated perfused rat heart. Am J Physiol Heart Circ Physiol 287: H351–H362, 2004 https://doi.org/10.1152/ajpheart.00983.2003
doi: 10.1152/ajpheart.00983.2003
Vedula EM, Charest JL: Microfabricated Kidney Tissue Models, 2nd Ed., edited by Bornstein, JT, Tandon V, Tao SL, Charest JL, Amsterdam,,Elsevier, 2019
Duan Y, Gotoh N, Yan Q, Du Z, Weinstein AM, Wang T, Weinbaum S: Shear-induced reorganization of renal proximal tubule cell actin cytoskeleton and apical junctional complexes. Proc Natl Acad Sci U S A 105: 11418–11423, 2008 https://doi.org/10.1073/pnas.0804954105
doi: 10.1073/pnas.0804954105
Raghavan V, Rbaibi Y, Pastor-Soler NM, Carattino MD, Weisz OA: Shear stress-dependent regulation of apical endocytosis in renal proximal tubule cells mediated by primary cilia [published correction appears in Proc Natl Acad Sci U S A 113: E1587, 2016 10.1073/pnas.16020411130. Proc Natl Acad Sci U S A 111: 8506–8511, 2014 https://doi.org/10.1073/pnas.1402195111
doi: 10.1073/pnas.1402195111
Weinbaum S, Duan Y, Satlin LM, Wang T, Weinstein AM: Mechanotransduction in the renal tubule. Am J Physiol Renal Physiol 299: F1220–F1236, 2010 https://doi.org/10.1152/ajprenal.00453.2010
doi: 10.1152/ajprenal.00453.2010
McDonough AA: Mechanisms of proximal tubule sodium transport regulation that link extracellular fluid volume and blood pressure. Am J Physiol Regul Integr Comp Physiol 298: R851–R861, 2010 https://doi.org/10.1152/ajpregu.00002.2010
doi: 10.1152/ajpregu.00002.2010
Vormann MK, Gijzen L, Hutter S, Boot L, Nicolas A, van den Heuvel A, Vriend J, Ng CP, Nieskens TTG, van Duinen V, de Wagenaar B, Masereeuw R, Suter-Dick L, Trietsch SJ, Wilmer M, Joore J, Vulto P, Lanz HL: Nephrotoxicity and kidney transport assessment on 3D perfused proximal tubules. AAPS J 20: 90, 2018 https://doi.org/10.1208/s12248-018-0248-z
doi: 10.1208/s12248-018-0248-z
Vriend J, Nieskens TTG, Vormann MK, van den Berge BT, van den Heuvel A, Russel FGM, Suter-Dick L, Lanz HL, Vulto P, Masereeuw R, Wilmer MJ: Screening of drug-transporter interactions in a 3D microfluidic renal proximal tubule on a chip. AAPS J 20: 87, 2018 https://doi.org/10.1208/s12248-018-0247-0
doi: 10.1208/s12248-018-0247-0
Suter-Dick L, Mauch L, Ramp D, Caj M, Vormann MK, Hutter S, Lanz HL, Vriend J, Masereeuw R, Wilmer MJ: Combining extracellular miRNA determination with microfluidic 3D cell cultures for the assessment of nephrotoxicity: A proof of concept study. AAPS J 20: 86, 2018 https://doi.org/10.1208/s12248-018-0245-2
doi: 10.1208/s12248-018-0245-2
Poyan Mehr A, Tran MT, Ralto KM, Leaf DE, Washco V, Messmer J, Lerner A, Kher A, Kim SH, Khoury CC, Herzig SJ, Trovato ME, Simon-Tillaux N, Lynch MR, Thadhani RI, Clish CB, Khabbaz KR, Rhee EP, Waikar SS, Berg AH, Parikh SM: De novo NAD + biosynthetic impairment in acute kidney injury in humans. Nat Med 24: 1351–1359, 2018 https://doi.org/10.1038/s41591-018-0138-z
doi: 10.1038/s41591-018-0138-z
Seguro AC, Poli de Figueiredo LF, Shimizu MHM: N-acetylcysteine (NAC) protects against acute kidney injury (AKI) following prolonged pneumoperitoneum in the rat. J Surg Res 175: 312–315, 2012 https://doi.org/10.1016/j.jss.2011.05.052
doi: 10.1016/j.jss.2011.05.052
Shimizu MHM, Danilovic A, Andrade L, Volpini RA, Libório AB, Sanches TR, Seguro AC: N-acetylcysteine protects against renal injury following bilateral ureteral obstruction. Nephrol Dial Transplant 23: 3067–3073, 2008 https://doi.org/10.1093/ndt/gfn237
doi: 10.1093/ndt/gfn237
DesRochers TM, Suter L, Roth A, Kaplan DL: Bioengineered 3D human kidney tissue, a platform for the determination of nephrotoxicity [published correction appears in PLoS One 8, 2013 10.1371/annotation/fb32f1b8-7397-40be-bbf9-b80e67763043]. PLoS One 8: e59219, 2013 https://doi.org/10.1371/journal.pone.0059219
doi: 10.1371/journal.pone.0059219
Lee HT, Emala CW: Protective effects of renal ischemic preconditioning and adenosine pretreatment: Role of A1 and A3 receptors. Am J Physiol Renal Physiol 278, 380–387, 2000, https://doi.org/10.1152/ajprenal.2000.278.3.F380
doi: 10.1152/ajprenal.2000.278.3.F380
Vulto P, Podszun S, Meyer P, Hermann C, Manz A, Urban GA: Phaseguides: A paradigm shift in microfluidic priming and emptying. Lab Chip 11: 1596–1602, 2011 https://doi.org/10.1039/c0lc00643b
doi: 10.1039/c0lc00643b
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A: Fiji: An open-source platform for biological-image analysis. Nat Methods 9: 676–682, 2012 https://doi.org/10.1038/nmeth.2019
doi: 10.1038/nmeth.2019
Raju S, Kavimani S, Uma Maheshwara Rao V, Sriramulu Reddy K: Nephrotoxicants and nephrotoxicity testing: An outline of in vitro alternatives. J Pharm Sci Res 3: 1110–1116, 2011
Belmokhtar CA, Hillion J, Ségal-Bendirdjian E: Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene 20: 3354–3362, 2001 https://doi.org/10.1038/sj.onc.1204436
doi: 10.1038/sj.onc.1204436
Jacob KA, Leaf DE, Dieleman JM, van Dijk D, Nierich AP, Rosseel PM, van der Maaten JM, Hofland J, Diephuis JC, de Lange F, Boer C, Kluin J, Waikar SS; Dexamethasone for Cardiac Surgery (DECS) Study Group: Intraoperative high-dose dexamethasone and severe AKI after cardiac surgery. J Am Soc Nephrol 26: 2947–2951, 2015 https://doi.org/10.1681/ASN.2014080840
doi: 10.1681/ASN.2014080840
Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA: Identification of ZO-1: A high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol 103: 755–766, 1986 https://doi.org/10.1083/jcb.103.3.755
doi: 10.1083/jcb.103.3.755
Egorova AD, van der Heiden K, Poelmann RE, Hierck BP: Primary cilia as biomechanical sensors in regulating endothelial function. Differentiation 83: S56–S61, 2012 https://doi.org/10.1016/j.diff.2011.11.007
doi: 10.1016/j.diff.2011.11.007
Raghavan V, Weisz OA: Flow stimulated endocytosis in the proximal tubule. Curr Opin Nephrol Hypertens 24: 359–365, 2015 https://doi.org/10.1097/MNH.0000000000000135
doi: 10.1097/MNH.0000000000000135
Berryman M, Franck Z, Bretscher A: Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J Cell Sci 105: 1025–1043, 1993 https://doi.org/10.1242/jcs.105.4.1025
doi: 10.1242/jcs.105.4.1025
Giannotta M, Trani M, Dejana E: VE-cadherin and endothelial adherens junctions: Active guardians of vascular integrity. Dev Cell 26: 441–454, 2013 https://doi.org/10.1016/j.devcel.2013.08.020
doi: 10.1016/j.devcel.2013.08.020
Hanson KM, Finkelstein JN: An accessible and high-throughput strategy of continuously monitoring apoptosis by fluorescent detection of caspase activation. Anal Biochem 564–565, 96–101, 2019 https://doi.org/10.1016/j.ab.2018.10.022 .
doi: 10.1016/j.ab.2018.10.022
Legrand C, Bour JM, Jacob C, Capiaumont J, Martial A, Marc A, Wudtke M, Kretzmer G, Demangel C, Duval D, Hache J: Lactate dehydrogenase (LDH) activity of the number of dead cells in the medium of cultured eukaryotic cells as marker. J Biotechnol 25: 231–243, 1992 https://doi.org/10.1016/0168-1656(92)90158-6
doi: 10.1016/0168-1656(92)90158-6
Zager RA, Johnson ACM, Becker K: Renal cortical lactate dehydrogenase: A useful, accurate, quantitative marker of in vivo tubular injury and acute renal failure. PLoS One 8: e66776, 2013 https://doi.org/10.1371/journal.pone.0066776
doi: 10.1371/journal.pone.0066776
Tominaga H, Ishiyama M, Ohseto F, Sasamoto K, Hamamoto T, Suzuki K, Watanabe M: A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal Commun 36: 47–50, 1999 https://doi.org/10.1039/a809656b
doi: 10.1039/a809656b
Chamchoy K, Pakotiprapha D, Pumirat P, Leartsakulpanich U, Boonyuen U: Application of WST-8 based colorimetric NAD(P)H detection for quantitative dehydrogenase assays. BMC Biochem 20: 4, 2019 https://doi.org/10.1186/s12858-019-0108-1
doi: 10.1186/s12858-019-0108-1
McPherson A Jr: Interaction of lactate dehydrogenase with its coenzyme, nicotinamide-adenine dinucleotide. J Mol Biol 51: 39–46, 1970 https://doi.org/10.1016/0022-2836(70)90268-8
doi: 10.1016/0022-2836(70)90268-8
Forlano AJ: Effect of the components parts of nicotinamide adenine dinucleotide (NAD) as inhibitors of lactic dehydrogenase. J Pharm Sci 56: 763–765, 1967 https://doi.org/10.1002/jps.2600560626
doi: 10.1002/jps.2600560626
Vormann MK, Vriend J, Lanz HL, Gijzen L, van den Heuvel A, Hutter S, Joore J, Trietsch SJ, Stuut C, Nieskens TTG, Peters JGP, Ramp D, Caj M, Russel FGM, Jacobsen B, Roth A, Lu S, Polli JW, Naidoo AA, Vulto P, Masereeuw R, Wilmer MJ, Suter-Dick L: Implementation of a human renal proximal tubule on a chip for nephrotoxicity and drug interaction studies. J Pharm Sci 110: 1601–1614, 2021 https://doi.org/10.1016/j.xphs.2021.01.028
doi: 10.1016/j.xphs.2021.01.028
Paquette F, Bernier-Jean A, Brunette V, Ammann H, Lavergne V, Pichette V, Troyanov S, Bouchard J: Acute kidney injury and renal recovery with the use of aminoglycosides: A large retrospective study. Nephron 131: 153–160, 2015 https://doi.org/10.1159/000440867
doi: 10.1159/000440867
Li S, Zhao J, Huang R, Steiner T, Bourner M, Mitchell M, Thompson DC, Zhao B, Xia M: Development and application of human renal proximal tubule epithelial cells for assessment of compound toxicity. Curr Chem Genomics Transl Med 11: 19–30, 2017 https://doi.org/10.2174/2213988501711010019
doi: 10.2174/2213988501711010019
Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T: Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem 268: 6077–6080, 1993 https://doi.org/10.1016/S0021-9258(18)53221-X
doi: 10.1016/S0021-9258(18)53221-X
Maass C, Sorensen NB, Himmelfarb J, Kelly EJ, Stokes CL, Cirit M: Translational assessment of drug-induced proximal tubule injury using a kidney microphysiological system. CPT Pharmacometrics Syst Pharmacol 8: 316–325, 2019 https://doi.org/10.1002/psp4.12400
doi: 10.1002/psp4.12400
Yap SC, Lee HT: Adenosine and protection from acute kidney injury. Curr Opin Nephrol Hypertens 21: 24–32, 2012 https://doi.org/10.1097/MNH.0b013e32834d2ec9
doi: 10.1097/MNH.0b013e32834d2ec9
Acute Kidney Injury Work Group: KDIGO clinical practice guideline for acute kidney injury. Kidney Int 2[Supp]: 1–138, 2012 https://doi.org/10.1038/kisup.2012.1
doi: 10.1038/kisup.2012.1
Rajman L, Chwalek K, Sinclair DA: Therapeutic potential of NAD-boosting molecules: The in vivo evidence. Cell Metab 27: 529–547, 2018 https://doi.org/10.1016/j.cmet.2018.02.011
doi: 10.1016/j.cmet.2018.02.011
Bulluck H, Hausenloy DJ: Modulating NAD + metabolism to prevent acute kidney injury. Nat Med 24: 1306–1307, 2018 https://doi.org/10.1038/s41591-018-0181-9
doi: 10.1038/s41591-018-0181-9
Petrosyan A, Cravedi P, Villani V, Angeletti A, Manrique J, Renieri A, De Filippo RE, Perin L, Da Sacco S: A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier [published correction appears in Nat Commun 10: 4791, 2019 10.1038/s41467-019-12177-7]. Nat Commun 10: 3656, 2019 https://doi.org/10.1038/s41467-019-11577-z
doi: 10.1038/s41467-019-11577-z
Schutgens F, Rookmaaker MB, Margaritis T, Rios A, Ammerlaan C, Jansen J, Gijzen L, Vormann M, Vonk A, Viveen M, Yengej FY, Derakhshan S, de Winter-de Groot KM, Artegiani B, van Boxtel R, Cuppen E, Hendrickx APA, van den Heuvel-Eibrink MM, Heitzer E, Lanz H, Beekman J, Murk JL, Masereeuw R, Holstege F, Drost J, Verhaar MC, Clevers H: Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat Biotechnol 37: 303–313, 2019 https://doi.org/10.1038/s41587-019-0048-8
doi: 10.1038/s41587-019-0048-8
Kane KIW, Moreno EL, Hachi S, Walter M, Jarazo J, Oliveira MAP, Hankemeier T, Vulto P, Schwamborn JC, Thoma M, Fleming RMT: Automated microfluidic cell culture of stem cell derived dopaminergic neurons. Sci Rep 9: 1796, 2019 https://doi.org/10.1038/s41598-018-34828-3
doi: 10.1038/s41598-018-34828-3

Auteurs

Marianne K Vormann (MK)

Mimetas BV, Oegstgeest, The Netherlands.

Laura M Tool (LM)

Mimetas BV, Oegstgeest, The Netherlands.

Masato Ohbuchi (M)

Analysis and Pharmacokinetics Research Labs, Astellas Pharma, Inc., Ibaraki, Japan.

Linda Gijzen (L)

Mimetas BV, Oegstgeest, The Netherlands.

Remko van Vught (R)

Mimetas BV, Oegstgeest, The Netherlands.

Thomas Hankemeier (T)

LACDR, Leiden University, The Netherlands.

Fumiko Kiyonaga (F)

Innovation and Incubation Research Labs, Astellas Pharma, Inc., Ibaraki, Japan.

Tetsuhiro Kawabe (T)

Modality Research Labs, Astellas Pharma, Inc., Ibaraki, Japan.

Takayuki Goto (T)

Modality Research Labs, Astellas Pharma, Inc., Ibaraki, Japan.

Akira Fujimori (A)

Research Portfolio Planning, Astellas Pharma, Inc., Ibaraki, Japan.

Paul Vulto (P)

Mimetas BV, Oegstgeest, The Netherlands.

Henriette L Lanz (HL)

Mimetas BV, Oegstgeest, The Netherlands.

Kazuhiro Tetsuka (K)

Analysis and Pharmacokinetics Research Labs, Astellas Pharma, Inc., Ibaraki, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH