Monocyte subpopulation profiling indicates CDK6-derived cell differentiation and identifies subpopulation-specific miRNA expression sets in acute and stable coronary artery disease.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
04 04 2022
04 04 2022
Historique:
received:
11
03
2021
accepted:
09
03
2022
entrez:
5
4
2022
pubmed:
6
4
2022
medline:
7
4
2022
Statut:
epublish
Résumé
Coronary artery disease (CAD) is a long-lasting inflammatory disease characterized by monocyte migration into the vessel wall leading to clinical events like myocardial infarction (MI). However, the role of monocyte subsets, especially their miRNA-driven differentiation in this scenario is still in its infancy. Here, we characterized monocyte subsets in controls and disease phenotypes of CAD and MI patients using flow cytometry and miRNA and mRNA expression profiling using RNA sequencing. We observed major differences in the miRNA profiles between the classical (CD14
Identifiants
pubmed: 35379829
doi: 10.1038/s41598-022-08600-7
pii: 10.1038/s41598-022-08600-7
pmc: PMC8979987
doi:
Substances chimiques
MicroRNAs
0
Receptors, IgG
0
CDK6 protein, human
EC 2.7.11.22
Cyclin-Dependent Kinase 6
EC 2.7.11.22
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5589Informations de copyright
© 2022. The Author(s).
Références
Jakubzick, C. V., Randolph, G. J. & Henson, P. M. Monocyte differentiation and antigen-presenting functions. Nat. Rev. Immunol. 17, 349 (2017).
pubmed: 28436425
doi: 10.1038/nri.2017.28
Fang, P. et al. Immune cell subset differentiation and tissue inflammation. J. Hematol. Oncol. 11, 97 (2018).
pubmed: 30064449
pmcid: 6069866
doi: 10.1186/s13045-018-0637-x
Patel, A. A. et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med. 214, 1913–1923 (2017).
pubmed: 28606987
pmcid: 5502436
doi: 10.1084/jem.20170355
Wong, K. L. et al. The three human monocyte subsets: Implications for health and disease. Immunol. Res. 53, 41–57 (2012).
pubmed: 22430559
doi: 10.1007/s12026-012-8297-3
Ziegler-Heitbrock, L. et al. Nomenclature of monocytes and dendritic cells in blood. Blood 116, 74 (2010).
doi: 10.1182/blood-2010-02-258558
Ziegler-Heitbrock, L. Blood monocytes and their subsets: Established features and open questions. Front. Immunol. 6, 423 (2015).
pubmed: 26347746
pmcid: 4538304
doi: 10.3389/fimmu.2015.00423
Ong, S.-M. et al. The pro-inflammatory phenotype of the human non-classical monocyte subset is attributed to senescence. Cell Death Dis. 9, 266 (2018).
pubmed: 29449647
pmcid: 5833376
doi: 10.1038/s41419-018-0327-1
Idzkowska, E. et al. The role of different monocyte subsets in the pathogenesis of atherosclerosis and acute coronary syndromes. Scand. J. Immunol. 82, 163–173 (2015).
pubmed: 25997925
doi: 10.1111/sji.12314
Ghattas, A., Griffiths, H. R., Devitt, A., Lip, G. Y. & Shantsila, E. Monocytes in coronary artery disease and atherosclerosis: Where are we now?. J. Am. Coll. Cardiol. 62, 1541–1551 (2013).
pubmed: 23973684
doi: 10.1016/j.jacc.2013.07.043
Dutta, P. & Nahrendorf, M. Monocytes in myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 35, 1066–1070 (2015).
pubmed: 25792449
pmcid: 4409536
doi: 10.1161/ATVBAHA.114.304652
van der Laan, A. M. et al. Monocyte subset accumulation in the human heart following acute myocardial infarction and the role of the spleen as monocyte reservoir. Eur. Heart J. 35, 376–385 (2013).
pubmed: 23966310
pmcid: 3916776
doi: 10.1093/eurheartj/eht331
Tapp, L. D., Shantsila, E., Wrigley, B. J., Pamukcu, B. & Lip, G. Y. H. The CD14
pubmed: 22212813
doi: 10.1111/j.1538-7836.2011.04603.x
Rogacev, K. S. et al. CD14
pubmed: 22999728
doi: 10.1016/j.jacc.2012.07.019
Schmidl, C. et al. Transcription and enhancer profiling in human monocyte subsets. Blood 123, 90 (2014).
doi: 10.1182/blood-2013-02-484188
Zawada, A. M. et al. Reprint of: MicroRNA profiling of human intermediate monocytes. Immunobiology 222, 831–840 (2017).
pubmed: 28578934
doi: 10.1016/j.imbio.2017.05.003
Cros, J. et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33, 375–386 (2010).
pubmed: 20832340
pmcid: 3063338
doi: 10.1016/j.immuni.2010.08.012
Passlick, B., Flieger, D. & Ziegler-Heitbrock, H. W. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 74, 2527–2534 (1989).
pubmed: 2478233
doi: 10.1182/blood.V74.7.2527.2527
Wong, K. L. et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 118, e16-31. https://doi.org/10.1182/blood-2010-12-326355 (2011).
doi: 10.1182/blood-2010-12-326355
pubmed: 21653326
Laurenti, E. et al. CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell 16, 302–313. https://doi.org/10.1016/j.stem.2015.01.017 (2015).
doi: 10.1016/j.stem.2015.01.017
pubmed: 25704240
pmcid: 4359055
Ganesan, J. et al. MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors. Circulation 127, 2097–2106 (2013).
pubmed: 23625957
doi: 10.1161/CIRCULATIONAHA.112.000882
Fang, L. et al. MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-β8. Oncogene 30, 806 (2011).
pubmed: 20956944
doi: 10.1038/onc.2010.465
Fang, J. et al. Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes. Apoptosis 17, 410–423 (2012).
pubmed: 22119805
doi: 10.1007/s10495-011-0683-0
Sala, V. et al. MicroRNAs in myocardial ischemia: Identifying new targets and tools for treating heart disease. New frontiers for miR-medicine. Cell. Mol. Life Sci. 71, 1439–1452 (2014).
pubmed: 24218009
doi: 10.1007/s00018-013-1504-0
Hofer-Warbinek, R. et al. Activation of NF-κB by XIAP, the X chromosome-linked inhibitor of apoptosis, in endothelial cells involves TAK1. J. Biol. Chem. 275, 22064–22068 (2000).
pubmed: 10807933
doi: 10.1074/jbc.M910346199
Cao, W. et al. Biomechanical stretch induces inflammation, proliferation, and migration by activating NFAT5 in arterial smooth muscle cells. Inflammation 40, 2129–2136 (2017).
pubmed: 28840417
doi: 10.1007/s10753-017-0653-y
Ahuja, P., Sdek, P. & MacLellan, W. R. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol. Rev. 87, 521–544 (2007).
pubmed: 17429040
doi: 10.1152/physrev.00032.2006
Siddiqui, W. A., Ahad, A. & Ahsan, H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: An update. Arch. Toxicol. 89, 289–317. https://doi.org/10.1007/s00204-014-1448-7 (2015).
doi: 10.1007/s00204-014-1448-7
pubmed: 25618543
Morlon, A., Munnich, A. & Smahi, A. TAB2, TRAF6 and TAK1 are involved in NF-κB activation induced by the TNF-receptor, Edar and its adaptator Edaradd. Hum. Mol. Genet. 14, 3751–3757 (2005).
pubmed: 16251197
doi: 10.1093/hmg/ddi405
Maimaitiaili, A., Li, J., Aibibula, A. & Abudureheman, M. Inhibition of nuclear factor kappa B pathway protects myocardial ischemia/reperfusion injury in rats under treatment with abnormal savda munziq. Am. J. Transl. Res. 10, 77 (2018).
pubmed: 29422995
pmcid: 5801348
Zhu, W., Zhao, M., Mattapally, S., Chen, S. & Zhang, J. CCND2 overexpression enhances the regenerative potency of human induced pluripotent stem cell-derived cardiomyocytes: Remuscularization of injured ventricle. Circ. Res. 122, 88–96. https://doi.org/10.1161/CIRCRESAHA.117.311504 (2018).
doi: 10.1161/CIRCRESAHA.117.311504
pubmed: 29018036
Chen, J. et al. mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ. Res. 112, 1557–1566. https://doi.org/10.1161/CIRCRESAHA.112.300658 (2013).
doi: 10.1161/CIRCRESAHA.112.300658
pubmed: 23575307
pmcid: 3756475
Li, C. et al. MicroRNA-143-3p promotes human cardiac fibrosis via targeting sprouty3 after myocardial infarction. J. Mol. Cell Cardiol. 129, 281–292. https://doi.org/10.1016/j.yjmcc.2019.03.005 (2019).
doi: 10.1016/j.yjmcc.2019.03.005
pubmed: 30878395
Goettsch, C. et al. miR-125b regulates calcification of vascular smooth muscle cells. Am. J. Pathol. 179, 1594–1600 (2011).
pubmed: 21806957
pmcid: 3181383
doi: 10.1016/j.ajpath.2011.06.016
Bartel, D. P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).
pubmed: 14744438
doi: 10.1016/S0092-8674(04)00045-5
Barwari, T., Joshi, A. & Mayr, M. MicroRNAs in cardiovascular disease. J. Am. Coll. Cardiol. 68, 2577–2584 (2016).
pubmed: 27931616
doi: 10.1016/j.jacc.2016.09.945
Dang, T. M. et al. MicroRNA expression profiling of human blood monocyte subsets highlights functional differences. Immunology 145, 404–416. https://doi.org/10.1111/imm.12456 (2015).
doi: 10.1111/imm.12456
pubmed: 25707426
pmcid: 4479539
Bidzhekov, K. et al. microRNA expression signatures and parallels between monocyte subsets and atherosclerotic plaque in humans. Thromb. Haemost. 107, 619–625. https://doi.org/10.1160/TH11-09-0607 (2012).
doi: 10.1160/TH11-09-0607
pubmed: 22370758
Liu, H. et al. Identification of non-invasive biomarkers for chronic atrophic gastritis from serum exosomal microRNAs. BMC Cancer 19, 129 (2019).
pubmed: 30736753
pmcid: 6368711
doi: 10.1186/s12885-019-5328-7
Yu, J., Xu, Q., Zhang, X. & Zhu, M. Circulating microRNA signatures serve as potential diagnostic biomarkers for Helicobacter pylori infection. J. Cell. Biochem. 120, 1735–1741 (2019).
doi: 10.1002/jcb.27462
Chen, X.-F. et al. MiR-151a is involved in the pathogenesis of atopic dermatitis by regulating interleukin-12 receptor 2. Exp. Dermatol. 27, 427–432 (2018).
pubmed: 27992076
doi: 10.1111/exd.13276
Yuan, X. et al. MicroRNA miR-223 as regulator of innate immunity. J. Leukoc. Biol. 104, 515–524 (2018).
pubmed: 29969525
doi: 10.1002/JLB.3MR0218-079R
Aziz, F. The emerging role of miR-223 as novel potential diagnostic and therapeutic target for inflammatory disorders. Cell Immunol. 303, 1–6. https://doi.org/10.1016/j.cellimm.2016.04.003 (2016).
doi: 10.1016/j.cellimm.2016.04.003
pubmed: 27129807
Zhang, L. et al. Epigenetics in non-classical monocytes support their pro-inflammatory gene expression. Immunobiology 225, 151958. https://doi.org/10.1016/j.imbio.2020.151958 (2020).
doi: 10.1016/j.imbio.2020.151958
pubmed: 32517883
Etzrodt, M. et al. Regulation of monocyte functional heterogeneity by miR-146a and Relb. Cell Rep. 1, 317–324. https://doi.org/10.1016/j.celrep.2012.02.009 (2012).
doi: 10.1016/j.celrep.2012.02.009
pubmed: 22545247
pmcid: 3334310
Kratofil, R. M., Kubes, P. & Deniset, J. F. Monocyte conversion during inflammation and injury. Arterioscler. Thromb. Vasc. Biol. 37, 35–42 (2017).
pubmed: 27765768
doi: 10.1161/ATVBAHA.116.308198
Friedman, R. C., Farh, K.K.-H., Burge, C. B. & Bartel, D. P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).
pubmed: 18955434
pmcid: 2612969
doi: 10.1101/gr.082701.108
Wang, G.-K. et al. Circulating microRNA: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur. Heart J. 31, 659–666 (2010).
pubmed: 20159880
doi: 10.1093/eurheartj/ehq013
Gupta, M. K. et al. miRNA-548c: A specific signature in circulating PBMCs from dilated cardiomyopathy patients. J. Mol. Cell. Cardiol. 62, 131–141 (2013).
pubmed: 23735785
pmcid: 3735826
doi: 10.1016/j.yjmcc.2013.05.011
Fichtlscherer, S. et al. Circulating microRNAs in patients with coronary artery disease. Circ. Res. 107, 677–684 (2010).
pubmed: 20595655
doi: 10.1161/CIRCRESAHA.109.215566
Majmudar, M. D. et al. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation 127, 2038–2046 (2013).
pubmed: 23616627
pmcid: 3661714
doi: 10.1161/CIRCULATIONAHA.112.000116
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, 47 (2015).
doi: 10.1093/nar/gkv007
Andrews, S. FastQC: A quality control tool for high throughput sequence data 370 (2010).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Kim, D. et al. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, 36 (2013).
doi: 10.1186/gb-2013-14-4-r36
Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, 1003118 (2013).
doi: 10.1371/journal.pcbi.1003118
Love, M., Anders, S. & Huber, W. Differential analysis of count data? The DESeq2 package. Genome Biol. 15, 10–1186 (2014).
Ru, Y. et al. The multiMiR R package and database: Integration of microRNA–target interactions along with their disease and drug associations. Nucleic Acids Res. 42, 133 (2014).
doi: 10.1093/nar/gku631
Bindea, G. et al. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093 (2009).
pubmed: 19237447
pmcid: 2666812
doi: 10.1093/bioinformatics/btp101
Luna, A. et al. rcellminer: Exploring molecular profiles and drug response of the NCI-60 cell lines in R. Bioinformatics 32, 1272–1274 (2015).
pubmed: 26635141
pmcid: 4907377
doi: 10.1093/bioinformatics/btv701
Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics J. Integr. Biol. 16, 284–287 (2012).
doi: 10.1089/omi.2011.0118