The human milk microbiome aligns with lactation stage and not birth mode.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
04 04 2022
04 04 2022
Historique:
received:
19
11
2021
accepted:
03
03
2022
entrez:
5
4
2022
pubmed:
6
4
2022
medline:
7
4
2022
Statut:
epublish
Résumé
We analysed the human milk microbiome in a cohort of 80 lactating women and followed the dynamics in taxa over the course of lactation from birth to 6 months. Two hundred and thirty one milk samples were collected from full-term lactating women at 1, 4, 8 and 24 weeks following birth and analysed for microbiota composition using 16S rRNA sequencing. A significant decrease in milk microbiota diversity was observed throughout the first 6 months of lactation, with the greatest difference seen between week 8 and week 24. Nine genera predominated in milk over lactation from week 1 to week 24, comprising of Staphylococcus, Streptococcus, Pseudomonas, Acinetobacter, Bifidobacterium, Mesorhizobium, Brevundimonas, Flavobacterium, and Rhodococcus; however, fluctuations in these core genera were apparent over time. There was a significant effect of stage of lactation on the microbiome, while no effect of birth mode, infant sex and maternal BMI was observed throughout lactation. Streptococcus had the highest mean relative abundance at week 1 and 24 (17.3% and 24% respectively), whereas Pseudomonas predominated at week 4 (22%) and week 8 (19%). Bifidobacterium and Lactobacillus had the highest mean relative abundance at week 4 (5% and 1.4% respectively), and occurred at a relative abundance of ≤ 1% at all other time points. A decrease in milk microbiota diversity throughout lactation was also observed. This study concluded that lactation stage was the primary driving factor in milk microbiota compositional changes over lactation from birth to 6 months, while mode of delivery was not a factor driving compositional changes throughout human lactation.
Identifiants
pubmed: 35379843
doi: 10.1038/s41598-022-09009-y
pii: 10.1038/s41598-022-09009-y
pmc: PMC8979980
doi:
Substances chimiques
RNA, Ribosomal, 16S
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5598Informations de copyright
© 2022. The Author(s).
Références
World Health Organization. Guideline: Protecting, Promoting and Supporting Breastfeeding in Facilities Providing Maternity and Newborn Services (World Health Organization, 2011).
Lessen, R. & Kavanagh, K. Position of the academy of nutrition and dietetics: Promoting and supporting breastfeeding. J. Acad. Nutr. Diet. 115(3), 444–449 (2015).
pubmed: 25721389
doi: 10.1016/j.jand.2014.12.014
Newburg, D. S. Innate immunity and human milk. J. Nutr. 135(5), 1308–1312 (2005).
pubmed: 15867330
doi: 10.1093/jn/135.5.1308
Ballard, O. & Morrow, A. L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. 60(1), 49–74 (2013).
Ruangsuriya, J., Malasao, R., Sapbamrer, R., Suppansan, P., Ayood, P., Kittisakmontri, K. & Siviroj, P. Macronutrients, immunoglobulin A and total antioxidant capacity of human milk during prolonged lactation. (2020).
Fernández, L. et al. The human milk microbiota: Origin and potential roles in health and disease. Pharmacol. Res. 69(1), 1–10 (2013).
pubmed: 22974824
doi: 10.1016/j.phrs.2012.09.001
Thongaram, T., Hoeflinger, J. L., Chow, J. & Miller, M. J. Human milk oligosaccharide consumption by probiotic and human-associated bifidobacteria and lactobacilli. J. Dairy Sci. 100(10), 7825–7833 (2017).
pubmed: 28780103
doi: 10.3168/jds.2017-12753
Bode, L. Human milk oligosaccharides at the interface of maternal-infant health. Breastfeeding Med. 13(S1), S-7 (2018).
doi: 10.1089/bfm.2018.29073.ljb
Houghteling, P. D. & Walker, W. A. Why is initial bacterial colonization of the intestine important to the infant’s and child’s health?. J. Pediatr. Gastroenterol. Nutr. 60(3), 294 (2015).
pubmed: 25313849
pmcid: 4340742
doi: 10.1097/MPG.0000000000000597
Hunt, K. M. et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE 6(6), 21313 (2011).
doi: 10.1371/journal.pone.0021313
Jost, T., Lacroix, C., Braegger, C. & Chassard, C. Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br. J. Nutr. 110(7), 1253–1262 (2013).
pubmed: 23507238
doi: 10.1017/S0007114513000597
Chen, P.-W., Lin, Y.-L. & Huang, M.-S. Profiles of commensal and opportunistic bacteria in human milk from healthy donors in Taiwan. J. Food Drug Anal. 26(4), 1235–1244 (2018).
pubmed: 30249322
doi: 10.1016/j.jfda.2018.03.004
Gomez-Gallego, C., Garcia-Mantrana, I., Salminen, S. & Collado, M. C. The Human Milk Microbiome and Factors Influencing Its Composition and Activity (Elsevier, 2021).
Khodayar-Pardo, P., Mira-Pascual, L., Collado, M. C. & Martínez-Costa, C. Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. J. Perinatol. 34(8), 599–605 (2014).
pubmed: 24674981
doi: 10.1038/jp.2014.47
Li, S.-W. et al. Bacterial composition and diversity in breast milk samples from mothers living in Taiwan and mainland China. Front. Microbiol. 8, 965 (2017).
pubmed: 28611760
pmcid: 5447776
doi: 10.3389/fmicb.2017.00965
Padilha, M. et al. Maternal Diet During Pregnancy and Lactation Modulates the Human Milk Microbiota. (2018).
Fernández, L. et al. Human milk microbiome and maternal postnatal psychosocial distress. Front. Microbiol. 10, 2333 (2019).
pubmed: 31695687
pmcid: 6817470
doi: 10.3389/fmicb.2019.02333
Hermansson, H. et al. Breast milk microbiota is shaped by mode of delivery and intrapartum antibiotic exposure. Front. Nutr. 6, 4 (2019).
pubmed: 30778389
pmcid: 6369203
doi: 10.3389/fnut.2019.00004
Murphy, K. et al. The composition of human milk and infant faecal microbiota over the first three months of life: A pilot study. Sci. Rep. 7(1), 1–10 (2017).
doi: 10.1038/srep40597
Cabrera-Rubio, R. et al. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 96(3), 544–551 (2012).
pubmed: 22836031
doi: 10.3945/ajcn.112.037382
Gonzalez, E. et al. Distinct changes occur in the human breast milk microbiome between early and established lactation in breastfeeding Guatemalan mothers. Front. Microbiol. 12, 194 (2021).
doi: 10.3389/fmicb.2021.557180
Lyons, K. E. et al. Effect of storage, temperature, and extraction kit on the phylogenetic composition detected in the human milk microbiota. MicrobiologyOpen 10, e1127 (2020).
pubmed: 33373099
pmcid: 7841076
Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21), 2957–2963 (2011).
pubmed: 21903629
pmcid: 3198573
doi: 10.1093/bioinformatics/btr507
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7(5), 335–336 (2010).
pubmed: 20383131
pmcid: 3156573
doi: 10.1038/nmeth.f.303
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19), 2460–2461 (2010).
pubmed: 20709691
doi: 10.1093/bioinformatics/btq461
Caporaso, J. G. et al. PyNAST: A flexible tool for aligning sequences to a template alignment. Bioinformatics 26(2), 266–267 (2010).
pubmed: 19914921
doi: 10.1093/bioinformatics/btp636
Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41(D1), D590–D596 (2012).
pubmed: 23193283
pmcid: 3531112
doi: 10.1093/nar/gks1219
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2013).
McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4), e61217 (2013).
pubmed: 23630581
pmcid: 3632530
doi: 10.1371/journal.pone.0061217
Shetty, A. S. & Lahti, L. microbiomeutilities: Utilities for Microbiome Analytics. (2020).
Wickham, H. Elegant graphics for data analysis. Media 35(211), 10–1007 (2009).
Cabrera-Rubio, R., Mira-Pascual, L., Mira, A. & Collado, M. C. Impact of mode of delivery on the milk microbiota composition of healthy women. J. Dev. Orig. Health Dis. 7(1), 54–60 (2016).
pubmed: 26286040
doi: 10.1017/S2040174415001397
Moossavi, S. et al. Composition and variation of the human milk microbiota are influenced by maternal and early-life factors. Cell Host Microbe 25(2), 324-335.e324 (2019).
pubmed: 30763539
doi: 10.1016/j.chom.2019.01.011
Wan, Y. et al. Human milk microbiota development during lactation and its relation to maternal geographic location and gestational hypertensive status. Gut Microbes 11(5), 1438–1449 (2020).
pubmed: 32543266
pmcid: 7524296
doi: 10.1080/19490976.2020.1760711
Lyons, K. E., Ryan, C. A., Dempsey, E. M., Ross, R. P. & Stanton, C. Breast milk, a source of beneficial microbes and associated benefits for infant health. Nutrients 12(4), 1039 (2020).
pmcid: 7231147
doi: 10.3390/nu12041039
Bode, L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 22(9), 1147–1162 (2012).
pubmed: 22513036
pmcid: 3406618
doi: 10.1093/glycob/cws074
Bardanzellu, F., Fanos, V. & Reali, A. “Omics” in human colostrum and mature milk: looking to old data with new eyes. Nutrients 9(8), 843 (2017).
pmcid: 5579636
doi: 10.3390/nu9080843
Moossavi, S. et al. Integrated analysis of human milk microbiota with oligosaccharides and fatty acids in the CHILD cohort. Front. Nutr. 6, 58 (2019).
pubmed: 31157227
pmcid: 6532658
doi: 10.3389/fnut.2019.00058
Ayoub Moubareck, C., Lootah, M., Tahlak, M. & Venema, K. Profiles of human milk oligosaccharides and their relations to the milk microbiota of breastfeeding mothers in Dubai. Nutrients 12(6), 1727 (2020).
pmcid: 7353065
doi: 10.3390/nu12061727
Sakwinska, O. et al. Microbiota in breast milk of Chinese lactating mothers. PLoS ONE 11(8), e0160856 (2016).
pubmed: 27529821
pmcid: 4987007
doi: 10.1371/journal.pone.0160856
Urbaniak, C., Angelini, M., Gloor, G. B. & Reid, G. Human milk microbiota profiles in relation to birthing method, gestation and infant gender. Microbiome 4(1), 1 (2016).
pubmed: 26739322
pmcid: 4702315
doi: 10.1186/s40168-015-0145-y
Pannaraj, P. S. et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 171(7), 647–654 (2017).
pubmed: 28492938
pmcid: 5710346
doi: 10.1001/jamapediatrics.2017.0378
Marin-Gómez, W., Grande, M., Pérez-Pulido, R., Galvez, A. & Lucas, R. Changes in the bacterial diversity of human milk during late lactation period (weeks 21 to 48). Foods 9(9), 1184 (2020).
pmcid: 7554819
doi: 10.3390/foods9091184
Boix-Amorós, A., Collado, M. C. & Mira, A. Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front. Microbiol. 7, 492 (2016).
pubmed: 27148183
pmcid: 4837678
doi: 10.3389/fmicb.2016.00492
Jost, T., Lacroix, C., Braegger, C. P. & Chassard, C. New insights in gut microbiota establishment in healthy breast fed neonates. PLoS ONE 7(8), e44595 (2012).
pubmed: 22957008
pmcid: 3431319
doi: 10.1371/journal.pone.0044595
Patel, S. H., Vaidya, Y. H., Joshi, C. G. & Kunjadia, A. P. Culture-dependent assessment of bacterial diversity from human milk with lactational mastitis. Comp. Clin. Pathol. 25(2), 437–443 (2016).
doi: 10.1007/s00580-015-2205-x
Huang, M. S. et al. Most commensally bacterial strains in human milk of healthy mothers display multiple antibiotic resistance. MicrobiologyOpen 8(1), e00618 (2019).
pubmed: 29577668
doi: 10.1002/mbo3.618
Belda-Ferre, P. et al. The oral metagenome in health and disease. ISME J. 6(1), 46–56 (2012).
pubmed: 21716308
doi: 10.1038/ismej.2011.85
Xu, H. et al. Plaque bacterial microbiome diversity in children younger than 30 months with or without caries prior to eruption of second primary molars. PLoS ONE 9(2), e89269 (2014).
pubmed: 24586647
pmcid: 3938432
doi: 10.1371/journal.pone.0089269
Al-Shehri, S. S. et al. Deep sequencing of the 16S ribosomal RNA of the neonatal oral microbiome: A comparison of breast-fed and formula-fed infants. Sci. Rep. 6, 38309 (2016).
pubmed: 27922070
pmcid: 5138828
doi: 10.1038/srep38309
Asbury, M. R. et al. Mothers of preterm infants have individualized breast milk microbiota that changes temporally based on maternal characteristics. Cell Host Microbe. 28, 669 (2020).
pubmed: 32888417
doi: 10.1016/j.chom.2020.08.001
Biagi, E. et al. Microbial community dynamics in mother’s milk and infant’s mouth and gut in moderately preterm infants. Front. Microbiol. 9, 2512 (2018).
pubmed: 30405571
pmcid: 6204356
doi: 10.3389/fmicb.2018.02512
Padilha, M. et al. The human milk microbiota is modulated by maternal diet. Microorganisms 7(11), 502 (2019).
pmcid: 6920866
doi: 10.3390/microorganisms7110502
Wang, M. et al. Fecal microbiota composition of breast-fed infants is correlated with human milk oligosaccharides consumed. J. Pediatr. Gastroenterol. Nutr. 60(6), 825 (2015).
pubmed: 25651488
pmcid: 4441539
doi: 10.1097/MPG.0000000000000752
Timmerman, H. M. et al. Intestinal colonisation patterns in breastfed and formula-fed infants during the first 12 weeks of life reveal sequential microbiota signatures. Sci. Rep. 7(1), 1–10 (2017).
doi: 10.1038/s41598-017-08268-4
Borewicz, K. et al. Correlating infant fecal microbiota composition and human milk oligosaccharide consumption by microbiota of 1-month-old breastfed infants. Mol. Nutr. Food Res. 63(13), 1801214 (2019).
pmcid: 6618098
doi: 10.1002/mnfr.201801214
Kordy, K. et al. Contributions to human breast milk microbiome and enteromammary transfer of Bifidobacterium breve. PLoS ONE 15(1), e0219633 (2020).
pubmed: 31990909
pmcid: 6986747
doi: 10.1371/journal.pone.0219633
Moore, R. E. & Townsend, S. D. Temporal development of the infant gut microbiome. Open Biol. 9(9), 190128 (2019).
pubmed: 31506017
pmcid: 6769289
doi: 10.1098/rsob.190128
Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 574(7776), 117–121 (2019).
pubmed: 31534227
pmcid: 6894937
doi: 10.1038/s41586-019-1560-1
Betrán, A. P. et al. The increasing trend in caesarean section rates: Global, regional and national estimates: 1990–2014. PLoS ONE 11(2), e0148343 (2016).
pubmed: 26849801
pmcid: 4743929
doi: 10.1371/journal.pone.0148343
Corona-Cervantes, K. et al. Human milk microbiota associated with early colonization of the neonatal gut in Mexican newborns. PeerJ 8, e9205 (2020).
pubmed: 32509465
pmcid: 7247532
doi: 10.7717/peerj.9205
Butts, C. A. et al. Microbiota composition of breast milk from women of different ethnicity from the Manawatu—Wanganui region of New Zealand. Nutrients 12(6), 1756 (2020).
pmcid: 7353441
doi: 10.3390/nu12061756
Cong, X. et al. Gut microbiome developmental patterns in early life of preterm infants: Impacts of feeding and gender. PLoS ONE 11(4), e0152751 (2016).
pubmed: 27111847
pmcid: 4844123
doi: 10.1371/journal.pone.0152751