The human milk microbiome aligns with lactation stage and not birth mode.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
04 04 2022
Historique:
received: 19 11 2021
accepted: 03 03 2022
entrez: 5 4 2022
pubmed: 6 4 2022
medline: 7 4 2022
Statut: epublish

Résumé

We analysed the human milk microbiome in a cohort of 80 lactating women and followed the dynamics in taxa over the course of lactation from birth to 6 months. Two hundred and thirty one milk samples were collected from full-term lactating women at 1, 4, 8 and 24 weeks following birth and analysed for microbiota composition using 16S rRNA sequencing. A significant decrease in milk microbiota diversity was observed throughout the first 6 months of lactation, with the greatest difference seen between week 8 and week 24. Nine genera predominated in milk over lactation from week 1 to week 24, comprising of Staphylococcus, Streptococcus, Pseudomonas, Acinetobacter, Bifidobacterium, Mesorhizobium, Brevundimonas, Flavobacterium, and Rhodococcus; however, fluctuations in these core genera were apparent over time. There was a significant effect of stage of lactation on the microbiome, while no effect of birth mode, infant sex and maternal BMI was observed throughout lactation. Streptococcus had the highest mean relative abundance at week 1 and 24 (17.3% and 24% respectively), whereas Pseudomonas predominated at week 4 (22%) and week 8 (19%). Bifidobacterium and Lactobacillus had the highest mean relative abundance at week 4 (5% and 1.4% respectively), and occurred at a relative abundance of ≤ 1% at all other time points. A decrease in milk microbiota diversity throughout lactation was also observed. This study concluded that lactation stage was the primary driving factor in milk microbiota compositional changes over lactation from birth to 6 months, while mode of delivery was not a factor driving compositional changes throughout human lactation.

Identifiants

pubmed: 35379843
doi: 10.1038/s41598-022-09009-y
pii: 10.1038/s41598-022-09009-y
pmc: PMC8979980
doi:

Substances chimiques

RNA, Ribosomal, 16S 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5598

Informations de copyright

© 2022. The Author(s).

Références

World Health Organization. Guideline: Protecting, Promoting and Supporting Breastfeeding in Facilities Providing Maternity and Newborn Services (World Health Organization, 2011).
Lessen, R. & Kavanagh, K. Position of the academy of nutrition and dietetics: Promoting and supporting breastfeeding. J. Acad. Nutr. Diet. 115(3), 444–449 (2015).
pubmed: 25721389 doi: 10.1016/j.jand.2014.12.014
Newburg, D. S. Innate immunity and human milk. J. Nutr. 135(5), 1308–1312 (2005).
pubmed: 15867330 doi: 10.1093/jn/135.5.1308
Ballard, O. & Morrow, A. L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. 60(1), 49–74 (2013).
Ruangsuriya, J., Malasao, R., Sapbamrer, R., Suppansan, P., Ayood, P., Kittisakmontri, K. & Siviroj, P. Macronutrients, immunoglobulin A and total antioxidant capacity of human milk during prolonged lactation. (2020).
Fernández, L. et al. The human milk microbiota: Origin and potential roles in health and disease. Pharmacol. Res. 69(1), 1–10 (2013).
pubmed: 22974824 doi: 10.1016/j.phrs.2012.09.001
Thongaram, T., Hoeflinger, J. L., Chow, J. & Miller, M. J. Human milk oligosaccharide consumption by probiotic and human-associated bifidobacteria and lactobacilli. J. Dairy Sci. 100(10), 7825–7833 (2017).
pubmed: 28780103 doi: 10.3168/jds.2017-12753
Bode, L. Human milk oligosaccharides at the interface of maternal-infant health. Breastfeeding Med. 13(S1), S-7 (2018).
doi: 10.1089/bfm.2018.29073.ljb
Houghteling, P. D. & Walker, W. A. Why is initial bacterial colonization of the intestine important to the infant’s and child’s health?. J. Pediatr. Gastroenterol. Nutr. 60(3), 294 (2015).
pubmed: 25313849 pmcid: 4340742 doi: 10.1097/MPG.0000000000000597
Hunt, K. M. et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE 6(6), 21313 (2011).
doi: 10.1371/journal.pone.0021313
Jost, T., Lacroix, C., Braegger, C. & Chassard, C. Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br. J. Nutr. 110(7), 1253–1262 (2013).
pubmed: 23507238 doi: 10.1017/S0007114513000597
Chen, P.-W., Lin, Y.-L. & Huang, M.-S. Profiles of commensal and opportunistic bacteria in human milk from healthy donors in Taiwan. J. Food Drug Anal. 26(4), 1235–1244 (2018).
pubmed: 30249322 doi: 10.1016/j.jfda.2018.03.004
Gomez-Gallego, C., Garcia-Mantrana, I., Salminen, S. & Collado, M. C. The Human Milk Microbiome and Factors Influencing Its Composition and Activity (Elsevier, 2021).
Khodayar-Pardo, P., Mira-Pascual, L., Collado, M. C. & Martínez-Costa, C. Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. J. Perinatol. 34(8), 599–605 (2014).
pubmed: 24674981 doi: 10.1038/jp.2014.47
Li, S.-W. et al. Bacterial composition and diversity in breast milk samples from mothers living in Taiwan and mainland China. Front. Microbiol. 8, 965 (2017).
pubmed: 28611760 pmcid: 5447776 doi: 10.3389/fmicb.2017.00965
Padilha, M. et al. Maternal Diet During Pregnancy and Lactation Modulates the Human Milk Microbiota. (2018).
Fernández, L. et al. Human milk microbiome and maternal postnatal psychosocial distress. Front. Microbiol. 10, 2333 (2019).
pubmed: 31695687 pmcid: 6817470 doi: 10.3389/fmicb.2019.02333
Hermansson, H. et al. Breast milk microbiota is shaped by mode of delivery and intrapartum antibiotic exposure. Front. Nutr. 6, 4 (2019).
pubmed: 30778389 pmcid: 6369203 doi: 10.3389/fnut.2019.00004
Murphy, K. et al. The composition of human milk and infant faecal microbiota over the first three months of life: A pilot study. Sci. Rep. 7(1), 1–10 (2017).
doi: 10.1038/srep40597
Cabrera-Rubio, R. et al. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 96(3), 544–551 (2012).
pubmed: 22836031 doi: 10.3945/ajcn.112.037382
Gonzalez, E. et al. Distinct changes occur in the human breast milk microbiome between early and established lactation in breastfeeding Guatemalan mothers. Front. Microbiol. 12, 194 (2021).
doi: 10.3389/fmicb.2021.557180
Lyons, K. E. et al. Effect of storage, temperature, and extraction kit on the phylogenetic composition detected in the human milk microbiota. MicrobiologyOpen 10, e1127 (2020).
pubmed: 33373099 pmcid: 7841076
Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21), 2957–2963 (2011).
pubmed: 21903629 pmcid: 3198573 doi: 10.1093/bioinformatics/btr507
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7(5), 335–336 (2010).
pubmed: 20383131 pmcid: 3156573 doi: 10.1038/nmeth.f.303
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19), 2460–2461 (2010).
pubmed: 20709691 doi: 10.1093/bioinformatics/btq461
Caporaso, J. G. et al. PyNAST: A flexible tool for aligning sequences to a template alignment. Bioinformatics 26(2), 266–267 (2010).
pubmed: 19914921 doi: 10.1093/bioinformatics/btp636
Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41(D1), D590–D596 (2012).
pubmed: 23193283 pmcid: 3531112 doi: 10.1093/nar/gks1219
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2013).
McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4), e61217 (2013).
pubmed: 23630581 pmcid: 3632530 doi: 10.1371/journal.pone.0061217
Shetty, A. S. & Lahti, L. microbiomeutilities: Utilities for Microbiome Analytics. (2020).
Wickham, H. Elegant graphics for data analysis. Media 35(211), 10–1007 (2009).
Cabrera-Rubio, R., Mira-Pascual, L., Mira, A. & Collado, M. C. Impact of mode of delivery on the milk microbiota composition of healthy women. J. Dev. Orig. Health Dis. 7(1), 54–60 (2016).
pubmed: 26286040 doi: 10.1017/S2040174415001397
Moossavi, S. et al. Composition and variation of the human milk microbiota are influenced by maternal and early-life factors. Cell Host Microbe 25(2), 324-335.e324 (2019).
pubmed: 30763539 doi: 10.1016/j.chom.2019.01.011
Wan, Y. et al. Human milk microbiota development during lactation and its relation to maternal geographic location and gestational hypertensive status. Gut Microbes 11(5), 1438–1449 (2020).
pubmed: 32543266 pmcid: 7524296 doi: 10.1080/19490976.2020.1760711
Lyons, K. E., Ryan, C. A., Dempsey, E. M., Ross, R. P. & Stanton, C. Breast milk, a source of beneficial microbes and associated benefits for infant health. Nutrients 12(4), 1039 (2020).
pmcid: 7231147 doi: 10.3390/nu12041039
Bode, L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 22(9), 1147–1162 (2012).
pubmed: 22513036 pmcid: 3406618 doi: 10.1093/glycob/cws074
Bardanzellu, F., Fanos, V. & Reali, A. “Omics” in human colostrum and mature milk: looking to old data with new eyes. Nutrients 9(8), 843 (2017).
pmcid: 5579636 doi: 10.3390/nu9080843
Moossavi, S. et al. Integrated analysis of human milk microbiota with oligosaccharides and fatty acids in the CHILD cohort. Front. Nutr. 6, 58 (2019).
pubmed: 31157227 pmcid: 6532658 doi: 10.3389/fnut.2019.00058
Ayoub Moubareck, C., Lootah, M., Tahlak, M. & Venema, K. Profiles of human milk oligosaccharides and their relations to the milk microbiota of breastfeeding mothers in Dubai. Nutrients 12(6), 1727 (2020).
pmcid: 7353065 doi: 10.3390/nu12061727
Sakwinska, O. et al. Microbiota in breast milk of Chinese lactating mothers. PLoS ONE 11(8), e0160856 (2016).
pubmed: 27529821 pmcid: 4987007 doi: 10.1371/journal.pone.0160856
Urbaniak, C., Angelini, M., Gloor, G. B. & Reid, G. Human milk microbiota profiles in relation to birthing method, gestation and infant gender. Microbiome 4(1), 1 (2016).
pubmed: 26739322 pmcid: 4702315 doi: 10.1186/s40168-015-0145-y
Pannaraj, P. S. et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 171(7), 647–654 (2017).
pubmed: 28492938 pmcid: 5710346 doi: 10.1001/jamapediatrics.2017.0378
Marin-Gómez, W., Grande, M., Pérez-Pulido, R., Galvez, A. & Lucas, R. Changes in the bacterial diversity of human milk during late lactation period (weeks 21 to 48). Foods 9(9), 1184 (2020).
pmcid: 7554819 doi: 10.3390/foods9091184
Boix-Amorós, A., Collado, M. C. & Mira, A. Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front. Microbiol. 7, 492 (2016).
pubmed: 27148183 pmcid: 4837678 doi: 10.3389/fmicb.2016.00492
Jost, T., Lacroix, C., Braegger, C. P. & Chassard, C. New insights in gut microbiota establishment in healthy breast fed neonates. PLoS ONE 7(8), e44595 (2012).
pubmed: 22957008 pmcid: 3431319 doi: 10.1371/journal.pone.0044595
Patel, S. H., Vaidya, Y. H., Joshi, C. G. & Kunjadia, A. P. Culture-dependent assessment of bacterial diversity from human milk with lactational mastitis. Comp. Clin. Pathol. 25(2), 437–443 (2016).
doi: 10.1007/s00580-015-2205-x
Huang, M. S. et al. Most commensally bacterial strains in human milk of healthy mothers display multiple antibiotic resistance. MicrobiologyOpen 8(1), e00618 (2019).
pubmed: 29577668 doi: 10.1002/mbo3.618
Belda-Ferre, P. et al. The oral metagenome in health and disease. ISME J. 6(1), 46–56 (2012).
pubmed: 21716308 doi: 10.1038/ismej.2011.85
Xu, H. et al. Plaque bacterial microbiome diversity in children younger than 30 months with or without caries prior to eruption of second primary molars. PLoS ONE 9(2), e89269 (2014).
pubmed: 24586647 pmcid: 3938432 doi: 10.1371/journal.pone.0089269
Al-Shehri, S. S. et al. Deep sequencing of the 16S ribosomal RNA of the neonatal oral microbiome: A comparison of breast-fed and formula-fed infants. Sci. Rep. 6, 38309 (2016).
pubmed: 27922070 pmcid: 5138828 doi: 10.1038/srep38309
Asbury, M. R. et al. Mothers of preterm infants have individualized breast milk microbiota that changes temporally based on maternal characteristics. Cell Host Microbe. 28, 669 (2020).
pubmed: 32888417 doi: 10.1016/j.chom.2020.08.001
Biagi, E. et al. Microbial community dynamics in mother’s milk and infant’s mouth and gut in moderately preterm infants. Front. Microbiol. 9, 2512 (2018).
pubmed: 30405571 pmcid: 6204356 doi: 10.3389/fmicb.2018.02512
Padilha, M. et al. The human milk microbiota is modulated by maternal diet. Microorganisms 7(11), 502 (2019).
pmcid: 6920866 doi: 10.3390/microorganisms7110502
Wang, M. et al. Fecal microbiota composition of breast-fed infants is correlated with human milk oligosaccharides consumed. J. Pediatr. Gastroenterol. Nutr. 60(6), 825 (2015).
pubmed: 25651488 pmcid: 4441539 doi: 10.1097/MPG.0000000000000752
Timmerman, H. M. et al. Intestinal colonisation patterns in breastfed and formula-fed infants during the first 12 weeks of life reveal sequential microbiota signatures. Sci. Rep. 7(1), 1–10 (2017).
doi: 10.1038/s41598-017-08268-4
Borewicz, K. et al. Correlating infant fecal microbiota composition and human milk oligosaccharide consumption by microbiota of 1-month-old breastfed infants. Mol. Nutr. Food Res. 63(13), 1801214 (2019).
pmcid: 6618098 doi: 10.1002/mnfr.201801214
Kordy, K. et al. Contributions to human breast milk microbiome and enteromammary transfer of Bifidobacterium breve. PLoS ONE 15(1), e0219633 (2020).
pubmed: 31990909 pmcid: 6986747 doi: 10.1371/journal.pone.0219633
Moore, R. E. & Townsend, S. D. Temporal development of the infant gut microbiome. Open Biol. 9(9), 190128 (2019).
pubmed: 31506017 pmcid: 6769289 doi: 10.1098/rsob.190128
Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 574(7776), 117–121 (2019).
pubmed: 31534227 pmcid: 6894937 doi: 10.1038/s41586-019-1560-1
Betrán, A. P. et al. The increasing trend in caesarean section rates: Global, regional and national estimates: 1990–2014. PLoS ONE 11(2), e0148343 (2016).
pubmed: 26849801 pmcid: 4743929 doi: 10.1371/journal.pone.0148343
Corona-Cervantes, K. et al. Human milk microbiota associated with early colonization of the neonatal gut in Mexican newborns. PeerJ 8, e9205 (2020).
pubmed: 32509465 pmcid: 7247532 doi: 10.7717/peerj.9205
Butts, C. A. et al. Microbiota composition of breast milk from women of different ethnicity from the Manawatu—Wanganui region of New Zealand. Nutrients 12(6), 1756 (2020).
pmcid: 7353441 doi: 10.3390/nu12061756
Cong, X. et al. Gut microbiome developmental patterns in early life of preterm infants: Impacts of feeding and gender. PLoS ONE 11(4), e0152751 (2016).
pubmed: 27111847 pmcid: 4844123 doi: 10.1371/journal.pone.0152751

Auteurs

Katriona E Lyons (KE)

Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.
APC Microbiome Ireland, University College Cork, Cork, Ireland.
School of Microbiology, University College Cork, Cork, Ireland.

Carol-Anne O ' Shea (CO')

APC Microbiome Ireland, University College Cork, Cork, Ireland.

Ghjuvan Grimaud (G)

Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.
APC Microbiome Ireland, University College Cork, Cork, Ireland.

C Anthony Ryan (CA)

APC Microbiome Ireland, University College Cork, Cork, Ireland.

Eugene Dempsey (E)

APC Microbiome Ireland, University College Cork, Cork, Ireland.
Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland.

Alan L Kelly (AL)

School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.

R Paul Ross (RP)

APC Microbiome Ireland, University College Cork, Cork, Ireland.
School of Microbiology, University College Cork, Cork, Ireland.

Catherine Stanton (C)

Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland. catherine.stanton@teagasc.ie.
APC Microbiome Ireland, University College Cork, Cork, Ireland. catherine.stanton@teagasc.ie.
School of Microbiology, University College Cork, Cork, Ireland. catherine.stanton@teagasc.ie.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH