Deep learning-based velocity antialiasing of 4D-flow MRI.
4D flow
MRI
hemodynamics
machine learning
thoracic aorta
Journal
Magnetic resonance in medicine
ISSN: 1522-2594
Titre abrégé: Magn Reson Med
Pays: United States
ID NLM: 8505245
Informations de publication
Date de publication:
07 2022
07 2022
Historique:
revised:
13
01
2022
received:
14
08
2021
accepted:
07
02
2022
pubmed:
6
4
2022
medline:
30
4
2022
entrez:
5
4
2022
Statut:
ppublish
Résumé
To develop a convolutional neural network (CNN) for the robust and fast correction of velocity aliasing in 4D-flow MRI. This study included 667 adult subjects with aortic 4D-flow MRI data with existing velocity aliasing (n = 362) and no velocity aliasing (n = 305). Additionally, 10 controls received back-to-back 4D-flow scans with systemically varied velocity-encoding sensitivity (vencs) at 60, 100, and 175 cm/s. The no-aliasing data sets were used to simulate velocity aliasing by reducing the venc to 40%-70% of the original, alongside a ground truth locating all aliased voxels (153 training, 152 testing). The 152 simulated and 362 existing aliasing data sets were used for testing and compared with a conventional velocity antialiasing algorithm. Dice scores were calculated to quantify CNN performance. For controls, the venc 175-cm/s scans were used as the ground truth and compared with the CNN-corrected venc 60 and 100 cm/s data sets RESULTS: The CNN required 176 ± 30 s to perform compared with 162 ± 14 s for the conventional algorithm. The CNN showed excellent performance for the simulated data compared with the conventional algorithm (median range of Dice scores CNN: [0.89-0.99], conventional algorithm: [0.84-0.94], p < 0.001, across all simulated vencs) and detected more aliased voxels in existing velocity aliasing data sets (median detected CNN: 159 voxels [31-605], conventional algorithm: 65 [7-417], p < 0.001). For controls, the CNN showed Dice scores of 0.98 [0.95-0.99] and 0.96 [0.87-0.99] for venc = 60 cm/s and 100 cm/s, respectively, while flow comparisons showed moderate-excellent agreement. Deep learning enabled fast and robust velocity anti-aliasing in 4D-flow MRI.
Identifiants
pubmed: 35381116
doi: 10.1002/mrm.29205
pmc: PMC9050855
mid: NIHMS1779790
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
449-463Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL115828
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL133504
Pays : United States
Organisme : NHLBI NIH HHS
ID : F30 HL145995
Pays : United States
Informations de copyright
© 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
Références
IEEE Trans Med Imaging. 2018 Jun;37(6):1310-1321
pubmed: 29870361
JACC Cardiovasc Imaging. 2019 Feb;12(2):252-266
pubmed: 30732721
J Magn Reson Imaging. 2016 Apr;43(4):833-42
pubmed: 26417641
J Magn Reson Imaging. 2007 Apr;25(4):824-31
pubmed: 17345635
Magn Reson Med. 2003 Jan;49(1):193-7
pubmed: 12509838
Magn Reson Med. 2010 Feb;63(2):349-55
pubmed: 20099326
Cardiovasc Diagn Ther. 2014 Apr;4(2):173-92
pubmed: 24834414
Radiographics. 2019 May-Jun;39(3):632-648
pubmed: 30901284
Jpn J Radiol. 2018 Sep;36(9):566-574
pubmed: 29982919
Magn Reson Med. 1995 May;33(5):713-9
pubmed: 7596276
Magn Reson Med. 2018 Nov;80(5):1765-1775
pubmed: 29520831
Magn Reson Med. 2022 Jul;88(1):449-463
pubmed: 35381116
J Magn Reson Imaging. 2008 Jul;28(1):210-8
pubmed: 18581344
Z Med Phys. 2019 May;29(2):102-127
pubmed: 30553609
Med Image Anal. 2019 Dec;58:101537
pubmed: 31446280
Radiographics. 2002 May-Jun;22(3):651-71
pubmed: 12006694
Magn Reson Med. 2020 Oct;84(4):2204-2218
pubmed: 32167203
J R Soc Interface. 2006 Jun 22;3(8):415-27
pubmed: 16849270
Magn Reson Med. 2015 Oct;74(4):964-70
pubmed: 25302683
IEEE Trans Image Process. 2007 Mar;16(3):698-709
pubmed: 17357730
Radiographics. 2008 Mar-Apr;28(2):407-16
pubmed: 18349448
J Cardiovasc Magn Reson. 2015 Aug 10;17:72
pubmed: 26257141
IEEE Trans Med Imaging. 2018 Sep;37(9):2137-2148
pubmed: 29994087
J Magn Reson Imaging. 1995 Sep-Oct;5(5):529-34
pubmed: 8574036