Quantum channel correction outperforming direct transmission.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
05 Apr 2022
Historique:
received: 21 01 2022
accepted: 11 03 2022
entrez: 6 4 2022
pubmed: 7 4 2022
medline: 7 4 2022
Statut: epublish

Résumé

Long-distance optical quantum channels are necessarily lossy, leading to errors in transmitted quantum information, entanglement degradation and, ultimately, poor protocol performance. Quantum states carrying information in the channel can be probabilistically amplified to compensate for loss, but are destroyed when amplification fails. Quantum correction of the channel itself is therefore required, but break-even performance-where arbitrary states can be better transmitted through a corrected channel than an uncorrected one-has so far remained out of reach. Here we perform distillation by heralded amplification to improve a noisy entanglement channel. We subsequently employ entanglement swapping to demonstrate that arbitrary quantum information transmission is unconditionally improved-i.e., without relying on postselection or post-processing of data-compared to the uncorrected channel. In this way, it represents realization of a genuine quantum relay. Our channel correction for single-mode quantum states will find use in quantum repeater, communication and metrology applications.

Identifiants

pubmed: 35383154
doi: 10.1038/s41467-022-29376-4
pii: 10.1038/s41467-022-29376-4
pmc: PMC8983674
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1832

Informations de copyright

© 2022. The Author(s).

Références

Opt Express. 2021 Mar 1;29(5):6991-7002
pubmed: 33726209
Phys Rev Lett. 2012 Nov 2;109(18):180503
pubmed: 23215262
Sci Adv. 2018 Jan 05;4(1):e1701230
pubmed: 29322093
Opt Express. 2016 May 16;24(10):10869-79
pubmed: 27409907
Phys Rev Lett. 2016 Feb 19;116(7):070501
pubmed: 26943519
Phys Rev Lett. 2012 Aug 17;109(7):070503
pubmed: 23006349
Rep Prog Phys. 2019 Jan;82(1):016001
pubmed: 30421725
Nat Commun. 2016 Oct 26;7:13222
pubmed: 27782135
Phys Rev Lett. 2010 Mar 26;104(12):123603
pubmed: 20366532
Phys Rev Lett. 2007 Jun 8;98(23):230501
pubmed: 17677888
Nature. 2005 Dec 8;438(7069):828-32
pubmed: 16341008
Phys Rev Lett. 2020 Sep 11;125(11):110506
pubmed: 32975988
Nat Commun. 2016 May 31;7:11720
pubmed: 27241946
Opt Express. 2016 Jan 11;24(1):125-33
pubmed: 26832244
Phys Rev Lett. 2017 Oct 27;119(17):170502
pubmed: 29219473
Phys Rev Lett. 2009 Mar 27;102(12):120501
pubmed: 19392258
Nature. 2016 Aug 25;536(7617):441-5
pubmed: 27437573

Auteurs

Sergei Slussarenko (S)

Centre for Quantum Dynamics and Centre for Quantum Computation and Communication Technology, Griffith University, Brisbane, QLD, Australia. s.slussarenko@griffith.edu.au.

Morgan M Weston (MM)

Centre for Quantum Dynamics and Centre for Quantum Computation and Communication Technology, Griffith University, Brisbane, QLD, Australia.

Lynden K Shalm (LK)

National Institute of Standards and Technology, Boulder, CO, USA.

Varun B Verma (VB)

National Institute of Standards and Technology, Boulder, CO, USA.

Sae-Woo Nam (SW)

National Institute of Standards and Technology, Boulder, CO, USA.

Sacha Kocsis (S)

Centre for Quantum Dynamics and Centre for Quantum Computation and Communication Technology, Griffith University, Brisbane, QLD, Australia.
Centre for Quantum Computation and Communication Technology, The University of New South Wales, Sydney, NSW, Australia.

Timothy C Ralph (TC)

Centre for Quantum Computation and Communication Technology, School of Mathematics and Physics, University of Queensland, St Lucia, QLD, Australia. ralph@physics.uq.edu.au.

Geoff J Pryde (GJ)

Centre for Quantum Dynamics and Centre for Quantum Computation and Communication Technology, Griffith University, Brisbane, QLD, Australia. g.pryde@griffith.edu.au.

Classifications MeSH