Mechanisms of microtubule organization in differentiated animal cells.


Journal

Nature reviews. Molecular cell biology
ISSN: 1471-0080
Titre abrégé: Nat Rev Mol Cell Biol
Pays: England
ID NLM: 100962782

Informations de publication

Date de publication:
08 2022
Historique:
accepted: 07 03 2022
pubmed: 7 4 2022
medline: 27 7 2022
entrez: 6 4 2022
Statut: ppublish

Résumé

Microtubules are polarized cytoskeletal filaments that serve as tracks for intracellular transport and form a scaffold that positions organelles and other cellular components and modulates cell shape and mechanics. In animal cells, the geometry, density and directionality of microtubule networks are major determinants of cellular architecture, polarity and proliferation. In dividing cells, microtubules form bipolar spindles that pull chromosomes apart, whereas in interphase cells, microtubules are organized in a cell type-specific fashion, which strongly correlates with cell physiology. In motile cells, such as fibroblasts and immune cells, microtubules are organized as radial asters, whereas in immotile epithelial and neuronal cells and in muscles, microtubules form parallel or antiparallel arrays and cortical meshworks. Here, we review recent work addressing how the formation of such microtubule networks is driven by the plethora of microtubule regulatory proteins. These include proteins that nucleate or anchor microtubule ends at different cellular structures and those that sever or move microtubules, as well as regulators of microtubule elongation, stability, bundling or modifications. The emerging picture, although still very incomplete, shows a remarkable diversity of cell-specific mechanisms that employ conserved building blocks to adjust microtubule organization in order to facilitate different cellular functions.

Identifiants

pubmed: 35383336
doi: 10.1038/s41580-022-00473-y
pii: 10.1038/s41580-022-00473-y
doi:

Substances chimiques

Microtubule-Associated Proteins 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

541-558

Informations de copyright

© 2022. Springer Nature Limited.

Références

Kapitein, L. C. & Hoogenraad, C. C. Building the neuronal microtubule cytoskeleton. Neuron 87, 492–506 (2015).
pubmed: 26247859 doi: 10.1016/j.neuron.2015.05.046
Cuenca-Zamora, E. J., Ferrer-Marin, F., Rivera, J. & Teruel-Montoya, R. Tubulin in platelets: when the shape matters. Int. J. Mol. Sci. 20, 3484 (2019).
pmcid: 6678703 doi: 10.3390/ijms20143484
Caporizzo, M. A., Chen, C. Y. & Prosser, B. L. Cardiac microtubules in health and heart disease. Exp. Biol. Med. 244, 1255–1272 (2019).
doi: 10.1177/1535370219868960
Mitchison, T. J. & Field, C. M. Self-organization of cellular units. Annu. Rev. Cell Dev. Biol. 37, 23–42 (2021).
pubmed: 34186005 pmcid: 9059766 doi: 10.1146/annurev-cellbio-120319-025356
Roostalu, J. & Surrey, T. Microtubule nucleation: beyond the template. Nat. Rev. Mol. Cell Biol. 18, 702–710 (2017).
pubmed: 28831203 doi: 10.1038/nrm.2017.75
Tovey, C. A. & Conduit, P. T. Microtubule nucleation by γ-tubulin complexes and beyond. Essays Biochem. 62, 765–780 (2018).
pubmed: 30315097 pmcid: 6281477 doi: 10.1042/EBC20180028
Lin, T. C., Neuner, A. & Schiebel, E. Targeting of γ-tubulin complexes to microtubule organizing centers: conservation and divergence. Trends Cell Biol. 25, 296–307 (2015).
pubmed: 25544667 doi: 10.1016/j.tcb.2014.12.002
Hannak, E. et al. The kinetically dominant assembly pathway for centrosomal asters in Caenorhabditis elegans is γ-tubulin dependent. J. Cell Biol. 157, 591–602 (2002).
pubmed: 12011109 pmcid: 2173857 doi: 10.1083/jcb.200202047
Rogers, G. C., Rusan, N. M., Peifer, M. & Rogers, S. L. A multicomponent assembly pathway contributes to the formation of acentrosomal microtubule arrays in interphase Drosophila cells. Mol. Biol. Cell 19, 3163–3178 (2008).
pubmed: 18463166 pmcid: 2441692 doi: 10.1091/mbc.e07-10-1069
Tsuchiya, K. & Goshima, G. Microtubule-associated proteins promote microtubule generation in the absence of γ-tubulin in human colon cancer cells. J. Cell Biol. 220, e202104114 (2021).
pubmed: 34779859 pmcid: 8598081 doi: 10.1083/jcb.202104114
Wang, S. et al. NOCA-1 functions with γ-tubulin and in parallel to Patronin to assemble non-centrosomal microtubule arrays in C. elegans. eLife 4, e08649 (2015). This study demonstrates how two pathways of microtubule minus-end organization can synergize or work in parallel to form non-centrosomal microtubule arrays in different cell types.
pubmed: 26371552 pmcid: 4608005 doi: 10.7554/eLife.08649
Sallee, M. D., Zonka, J. C., Skokan, T. D., Raftrey, B. C. & Feldman, J. L. Tissue-specific degradation of essential centrosome components reveals distinct microtubule populations at microtubule organizing centers. PLoS Biol. 16, e2005189 (2018).
pubmed: 30080857 pmcid: 6103517 doi: 10.1371/journal.pbio.2005189
Zheng, Y. et al. A perinuclear microtubule-organizing centre controls nuclear positioning and basement membrane secretion. Nat. Cell Biol. 22, 297–309 (2020). This paper describes an unconventional, γ-TuRC-independent pathway of microtubule organization acting at the nuclear envelope of fly fat body cells.
pubmed: 32066907 pmcid: 7161059 doi: 10.1038/s41556-020-0470-7
King, M. R. & Petry, S. Phase separation of TPX2 enhances and spatially coordinates microtubule nucleation. Nat. Commun. 11, 270 (2020).
pubmed: 31937751 pmcid: 6959270 doi: 10.1038/s41467-019-14087-0
Woodruff, J. B. et al. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell 169, 1066–1077 (2017).
pubmed: 28575670 doi: 10.1016/j.cell.2017.05.028
Roostalu, J., Cade, N. I. & Surrey, T. Complementary activities of TPX2 and chTOG constitute an efficient importin-regulated microtubule nucleation module. Nat. Cell Biol. 17, 1422–1434 (2015).
pubmed: 26414402 pmcid: 4826748 doi: 10.1038/ncb3241
Manka, S. W. & Moores, C. A. Pseudo-repeats in doublecortin make distinct mechanistic contributions to microtubule regulation. EMBO Rep. 21, e51534 (2020).
pubmed: 33051979 pmcid: 7726794 doi: 10.15252/embr.202051534
Aher, A. et al. CLASP mediates microtubule repair by restricting lattice damage and regulating tubulin incorporation. Curr. Biol. 30, 2175–2183 (2020).
pubmed: 32359430 pmcid: 7280784 doi: 10.1016/j.cub.2020.03.070
Abal, M. et al. Microtubule release from the centrosome in migrating cells. J. Cell Biol. 159, 731–737 (2002).
pubmed: 12473683 pmcid: 2173398 doi: 10.1083/jcb.200207076
Goldspink, D. A. et al. Ninein is essential for apico-basal microtubule formation and CLIP-170 facilitates its redeployment to non-centrosomal microtubule organizing centres. Open. Biol. 7, 160274 (2017).
pubmed: 28179500 pmcid: 5356440 doi: 10.1098/rsob.160274
Delgehyr, N., Sillibourne, J. & Bornens, M. Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J. Cell Sci. 118, 1565–1575 (2005).
pubmed: 15784680 doi: 10.1242/jcs.02302
Lechler, T. & Fuchs, E. Desmoplakin: an unexpected regulator of microtubule organization in the epidermis. J. Cell Biol. 176, 147–154 (2007).
pubmed: 17227889 pmcid: 2063934 doi: 10.1083/jcb.200609109
Lecland, N., Hsu, C. Y., Chemin, C., Merdes, A. & Bierkamp, C. Epidermal development requires ninein for spindle orientation and cortical microtubule organization. Life Sci. Alliance 2, e201900373 (2019).
pubmed: 30923192 pmcid: 6441496 doi: 10.26508/lsa.201900373
Meng, W., Mushika, Y., Ichii, T. & Takeichi, M. Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell–cell contacts. Cell 135, 948–959 (2008). This landmark study presents the first functional description of a CAMSAP/Patronin family member and shows that it is involved in microtubule organization at cell–cell junctions.
pubmed: 19041755 doi: 10.1016/j.cell.2008.09.040
Goodwin, S. S. & Vale, R. D. Patronin regulates the microtubule network by protecting microtubule minus ends. Cell 143, 263–274 (2010).
pubmed: 20946984 pmcid: 3008421 doi: 10.1016/j.cell.2010.09.022
Jiang, K. et al. Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition. Dev. Cell 28, 295–309 (2014).
pubmed: 24486153 doi: 10.1016/j.devcel.2014.01.001
Hernandez-Vega, A. et al. Local nucleation of microtubule bundles through tubulin concentration into a condensed tau phase. Cell Rep. 20, 2304–2312 (2017).
pubmed: 28877466 pmcid: 5828996 doi: 10.1016/j.celrep.2017.08.042
Imasaki, T. et al. CAMSAP2 organizes a γ-tubulin-independent microtubule nucleation centre. Preprint at bioRxiv https://doi.org/10.1101/2021.03.01.433304 (2021).
doi: 10.1101/2021.03.01.433304
Wu, J. et al. Molecular pathway of microtubule organization at the Golgi apparatus. Dev. Cell 39, 44–60 (2016). This study provides a comprehensive analysis of the pathways of microtubule nucleation and anchoring at the Golgi apparatus.
pubmed: 27666745 doi: 10.1016/j.devcel.2016.08.009
Coquand, L. et al. CAMSAPs organize an acentrosomal microtubule network from basal varicosities in radial glial cells. J. Cell Biol. 220, e202003151 (2021).
pubmed: 34019079 pmcid: 8144914 doi: 10.1083/jcb.202003151
Noordstra, I. et al. Control of apico-basal epithelial polarity by the microtubule minus-end-binding protein CAMSAP3 and spectraplakin ACF7. J. Cell Sci. 129, 4278–4288 (2016).
pubmed: 27802168
Khanal, I., Elbediwy, A., Diaz de la Loza Mdel, C., Fletcher, G. C. & Thompson, B. J. Shot and Patronin polarise microtubules to direct membrane traffic and biogenesis of microvilli in epithelia. J. Cell Sci. 129, 2651–2659 (2016).
pubmed: 27231092 pmcid: 4958304
Martin, M. & Akhmanova, A. Coming into focus: mechanisms of microtubule minus-end organization. Trends Cell Biol. 28, 574–588 (2018).
pubmed: 29571882 doi: 10.1016/j.tcb.2018.02.011
Dong, C. et al. CAMSAP3 accumulates in the pericentrosomal area and accompanies microtubule release from the centrosome via katanin. J. Cell Sci. 130, 1709–1715 (2017).
pubmed: 28386021
Gillard, G., Girdler, G. & Roper, K. A release-and-capture mechanism generates an essential non-centrosomal microtubule array during tube budding. Nat. Commun. 12, 4096 (2021). This paper shows how a microtubule array formed by severing and minus-end stabilization affects tissue morphogenesis.
pubmed: 34215746 pmcid: 8253823 doi: 10.1038/s41467-021-24332-0
Muroyama, A., Seldin, L. & Lechler, T. Divergent regulation of functionally distinct γ-tubulin complexes during differentiation. J. Cell Biol. 213, 679–692 (2016). This paper provides important insights into switching from a centrosomal to a non-centrosomal microtubule array during cell differentiation and into the role of γ-TuRC-associated proteins in this process.
pubmed: 27298324 pmcid: 4915192 doi: 10.1083/jcb.201601099
Stiess, M. et al. Axon extension occurs independently of centrosomal microtubule nucleation. Science 327, 704–707 (2010).
pubmed: 20056854 doi: 10.1126/science.1182179
Muroyama, A. & Lechler, T. Microtubule organization, dynamics and functions in differentiated cells. Development 144, 3012–3021 (2017).
pubmed: 28851722 pmcid: 5611961 doi: 10.1242/dev.153171
Zhang, X. et al. Cell-type-specific alternative splicing governs cell fate in the developing cerebral cortex. Cell 166, 1147–1162 (2016).
pubmed: 27565344 pmcid: 5248659 doi: 10.1016/j.cell.2016.07.025
Zhu, X. & Kaverina, I. Golgi as an MTOC: making microtubules for its own good. Histochem. Cell Biol. 140, 361–367 (2013).
pubmed: 23821162 pmcid: 3748218 doi: 10.1007/s00418-013-1119-4
Liang, X. et al. Growth cone-localized microtubule organizing center establishes microtubule orientation in dendrites. eLife 9, e56547 (2020).
pubmed: 32657271 pmcid: 7375809 doi: 10.7554/eLife.56547
Bernabe-Rubio, M. & Alonso, M. A. Routes and machinery of primary cilium biogenesis. Cell Mol. Life Sci. 74, 4077–4095 (2017).
pubmed: 28624967 doi: 10.1007/s00018-017-2570-5
Pitaval, A. et al. Microtubule stabilization drives 3D centrosome migration to initiate primary ciliogenesis. J. Cell Biol. 216, 3713–3728 (2017).
pubmed: 28993469 pmcid: 5674878 doi: 10.1083/jcb.201610039
Garbrecht, J., Laos, T., Holzer, E., Dillinger, M. & Dammermann, A. An acentriolar centrosome at the C. elegans ciliary base. Curr. Biol. 31, 2418–2428.e8 (2021).
pubmed: 33798427 doi: 10.1016/j.cub.2021.03.023
Magescas, J., Eskinazi, S., Tran, M. V. & Feldman, J. L. Centriole-less pericentriolar material serves as a microtubule organizing center at the base of C. elegans sensory cilia. Curr. Biol. 31, 2410–2417 (2021). Together with Garbrecht et al. (2021), this work provides molecular and functional insight into the formation of an acentriolar MTOC located at the ciliary base in worm neurons.
pubmed: 33798428 pmcid: 8277230 doi: 10.1016/j.cub.2021.03.022
Spassky, N. & Meunier, A. The development and functions of multiciliated epithelia. Nat. Rev. Mol. Cell Biol. 18, 423–436 (2017).
pubmed: 28400610 doi: 10.1038/nrm.2017.21
Clare, D. K. et al. Basal foot MTOC organizes pillar MTs required for coordination of beating cilia. Nat. Commun. 5, 4888 (2014).
pubmed: 25215410 doi: 10.1038/ncomms5888
Tateishi, K., Nishida, T., Inoue, K. & Tsukita, S. Three-dimensional organization of layered apical cytoskeletal networks associated with mouse airway tissue development. Sci. Rep. 7, 43783 (2017).
pubmed: 28272499 pmcid: 5363704 doi: 10.1038/srep43783
Mercey, O. et al. Massive centriole production can occur in the absence of deuterosomes in multiciliated cells. Nat. Cell Biol. 21, 1544–1552 (2019).
pubmed: 31792378 pmcid: 6913274 doi: 10.1038/s41556-019-0427-x
Usami, F. M. et al. Intercellular and intracellular cilia orientation is coordinated by CELSR1 and CAMSAP3 in oviduct multi-ciliated cells. J. Cell Sci. 134, jcs257006 (2021).
pubmed: 33468623 doi: 10.1242/jcs.257006
Robinson, A. M. et al. CAMSAP3 facilitates basal body polarity and the formation of the central pair of microtubules in motile cilia. Proc. Natl Acad. Sci. USA 117, 13571–13579 (2020).
pubmed: 32482850 pmcid: 7306751 doi: 10.1073/pnas.1907335117
Rios, R. M. The centrosome–Golgi apparatus nexus. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130462 (2014).
pubmed: 25047616 pmcid: 4113106 doi: 10.1098/rstb.2013.0462
Rivero, S., Cardenas, J., Bornens, M. & Rios, R. M. Microtubule nucleation at the cis-side of the Golgi apparatus requires AKAP450 and GM130. EMBO J. 28, 1016–1028 (2009).
pubmed: 19242490 pmcid: 2683699 doi: 10.1038/emboj.2009.47
Gavilan, M. P. et al. The dual role of the centrosome in organizing the microtubule network in interphase. EMBO Rep. 19, e45942 (2018).
pubmed: 30224411 pmcid: 6216252 doi: 10.15252/embr.201845942
Yang, C. et al. EB1 and EB3 regulate microtubule minus end organization and Golgi morphology. J. Cell Biol. 216, 3179–3198 (2017).
pubmed: 28814570 pmcid: 5626540 doi: 10.1083/jcb.201701024
Efimov, A. et al. Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev. Cell 12, 917–930 (2007). This study convincingly demonstrates that the Golgi apparatus serves as a major MTOC in mammalian cells.
pubmed: 17543864 pmcid: 2705290 doi: 10.1016/j.devcel.2007.04.002
Mukherjee, A., Brooks, P. S., Bernard, F., Guichet, A. & Conduit, P. T. D. Microtubules originate asymmetrically at the somatic Golgi and are guided via Kinesin2 to maintain polarity within neurons. eLife 9, e58943 (2020).
pubmed: 32657758 pmcid: 7394546 doi: 10.7554/eLife.58943
Valenzuela, A., Meservey, L., Nguyen, H. & Fu, M. M. Golgi outposts nucleate microtubules in cells with specialized shapes. Trends Cell Biol. 30, 792–804 (2020).
pubmed: 32863092 doi: 10.1016/j.tcb.2020.07.004
Oddoux, S. et al. Microtubules that form the stationary lattice of muscle fibers are dynamic and nucleated at Golgi elements. J. Cell Biol. 203, 205–213 (2013).
pubmed: 24145165 pmcid: 3812964 doi: 10.1083/jcb.201304063
Gimpel, P. et al. Nesprin-1α-dependent microtubule nucleation from the nuclear envelope via Akap450 is necessary for nuclear positioning in muscle cells. Curr. Biol. 27, 2999–3009 (2017).
pubmed: 28966089 pmcid: 5640514 doi: 10.1016/j.cub.2017.08.031
Yalgin, C. et al. Centrosomin represses dendrite branching by orienting microtubule nucleation. Nat. Neurosci. 18, 1437–1445 (2015).
pubmed: 26322925 doi: 10.1038/nn.4099
Ori-McKenney, K. M., Jan, L. Y. & Jan, Y. N. Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal microtubule nucleation in neurons. Neuron 76, 921–930 (2012).
pubmed: 23217741 pmcid: 3523279 doi: 10.1016/j.neuron.2012.10.008
Yang, S. Z. & Wildonger, J. Golgi outposts locally regulate microtubule orientation in neurons but are not required for the overall polarity of the dendritic cytoskeleton. Genetics 215, 435–447 (2020).
pubmed: 32265236 pmcid: 7268992 doi: 10.1534/genetics.119.302979
Nguyen, M. M. et al. γ-Tubulin controls neuronal microtubule polarity independently of Golgi outposts. Mol. Biol. Cell 25, 2039–2050 (2014).
pubmed: 24807906 pmcid: 4072577 doi: 10.1091/mbc.e13-09-0515
Fu, M. M. et al. The Golgi outpost protein TPPP nucleates microtubules and is critical for myelination. Cell 179, 132–146 (2019).
pubmed: 31522887 pmcid: 7214773 doi: 10.1016/j.cell.2019.08.025
Weiner, A. T. et al. Endosomal Wnt signaling proteins control microtubule nucleation in dendrites. PLoS Biol. 18, e3000647 (2020). This paper shows that Wnt signalling pathway components associated with endosomes participate in organizing microtubules in fly neurons.
pubmed: 32163403 pmcid: 7067398 doi: 10.1371/journal.pbio.3000647
Hehnly, H. & Doxsey, S. Rab11 endosomes contribute to mitotic spindle organization and orientation. Dev. Cell 28, 497–507 (2014).
pubmed: 24561039 pmcid: 4030695 doi: 10.1016/j.devcel.2014.01.014
Krishnan, N. et al. Rab11 endosomes coordinate centrosome number and movement following mitotic exit. biorRxiv https://doi.org/10.1101/2021.08.11.455966 (2021).
doi: 10.1101/2021.08.11.455966
Chen, J. V., Buchwalter, R. A., Kao, L. R. & Megraw, T. L. A splice variant of centrosomin converts mitochondria to microtubule-organizing centers. Curr. Biol. 27, 1928–1940 (2017).
pubmed: 28669756 pmcid: 6147254 doi: 10.1016/j.cub.2017.05.090
Vergarajauregui, S. et al. AKAP6 orchestrates the nuclear envelope microtubule-organizing center by linking Golgi and nucleus via AKAP9. eLife 9, e61669 (2020). This study represents a comprehensive analysis of the MTOC associated with the nuclear envelope in cardiomyocytes.
pubmed: 33295871 pmcid: 7725499 doi: 10.7554/eLife.61669
Harris, T. J. & Peifer, M. aPKC controls microtubule organization to balance adherens junction symmetry and planar polarity during development. Dev. Cell 12, 727–738 (2007).
pubmed: 17488624 pmcid: 1950292 doi: 10.1016/j.devcel.2007.02.011
Feldman, J. L. & Priess, J. R. A role for the centrosome and PAR-3 in the hand-off of MTOC function during epithelial polarization. Curr. Biol. 22, 575–582 (2012).
pubmed: 22425160 pmcid: 3409831 doi: 10.1016/j.cub.2012.02.044
Sanchez, A. D. et al. Proximity labeling reveals non-centrosomal microtubule-organizing center components required for microtubule growth and localization. Curr. Biol. 31, 3586–3600 (2021).
pubmed: 34242576 doi: 10.1016/j.cub.2021.06.021
Castiglioni, V. G. et al. Epidermal PAR-6 and PKC-3 are essential for larval development of C. elegans and organize non-centrosomal microtubules. eLife 9, e62067 (2020).
pubmed: 33300872 pmcid: 7755398 doi: 10.7554/eLife.62067
Toya, M. et al. CAMSAP3 orients the apical-to-basal polarity of microtubule arrays in epithelial cells. Proc. Natl Acad. Sci. USA 113, 332–337 (2016).
pubmed: 26715742 doi: 10.1073/pnas.1520638113
Nashchekin, D., Fernandes, A. R. & St Johnston, D. Patronin/shot cortical foci assemble the noncentrosomal microtubule array that specifies the Drosophila anterior–posterior axis. Dev. Cell 38, 61–72 (2016).
pubmed: 27404359 pmcid: 4943857 doi: 10.1016/j.devcel.2016.06.010
Guerreiro, A. et al. WDR62 localizes katanin at spindle poles to ensure synchronous chromosome segregation. J. Cell Biol. 220, e202007171 (2021).
pubmed: 34137788 pmcid: 8240857 doi: 10.1083/jcb.202007171
Huang, J., Liang, Z., Guan, C., Hua, S. & Jiang, K. WDR62 regulates spindle dynamics as an adaptor protein between TPX2/Aurora A and katanin. J. Cell Biol. 220, e202007167 (2021).
pubmed: 34137789 pmcid: 8240853 doi: 10.1083/jcb.202007167
Petry, S., Groen, A. C., Ishihara, K., Mitchison, T. J. & Vale, R. D. Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2. Cell 152, 768–777 (2013).
pubmed: 23415226 pmcid: 3680348 doi: 10.1016/j.cell.2012.12.044
Sanchez-Huertas, C. et al. Non-centrosomal nucleation mediated by augmin organizes microtubules in post-mitotic neurons and controls axonal microtubule polarity. Nat. Commun. 7, 12187 (2016).
pubmed: 27405868 pmcid: 4947180 doi: 10.1038/ncomms12187
Cunha-Ferreira, I. et al. The HAUS complex is a key regulator of non-centrosomal microtubule organization during neuronal development. Cell Rep. 24, 791–800 (2018). Together with ref. 80, this work demonstrates that branching microtubule nucleation has a role in the formation of microtubule arrays in different neuronal compartments.
pubmed: 30044976 pmcid: 6083040 doi: 10.1016/j.celrep.2018.06.093
Qu, X., Kumar, A., Blockus, H., Waites, C. & Bartolini, F. Activity-dependent nucleation of dynamic microtubules at presynaptic boutons controls neurotransmission. Curr. Biol. 29, 4231–4240 (2019).
pubmed: 31813605 pmcid: 6917861 doi: 10.1016/j.cub.2019.10.049
Zenker, J. et al. A microtubule-organizing center directing intracellular transport in the early mouse embryo. Science 357, 925–928 (2017). This paper shows how the cytokinetic bridge is transformed into an MTOC during early mammalian development.
pubmed: 28860385 doi: 10.1126/science.aam9335
Labat-de-Hoz, L. et al. A model for primary cilium biogenesis by polarized epithelial cells: role of the midbody remnant and associated specialized membranes. Front. Cell Dev. Biol. 8, 622918 (2020).
pubmed: 33585461 doi: 10.3389/fcell.2020.622918
Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).
pubmed: 9442869 doi: 10.1146/annurev.cellbio.13.1.83
Brouhard, G. J. & Rice, L. M. Microtubule dynamics: an interplay of biochemistry and mechanics. Nat. Rev. Mol. Cell Biol. 19, 451–463 (2018).
pubmed: 29674711 pmcid: 6019280 doi: 10.1038/s41580-018-0009-y
Gudimchuk, N. B. & McIntosh, J. R. Regulation of microtubule dynamics, mechanics and function through the growing tip. Nat. Rev. Mol. Cell Biol. 22, 777–795 (2021).
pubmed: 34408299 doi: 10.1038/s41580-021-00399-x
Estevez-Gallego, J. et al. Structural model for differential cap maturation at growing microtubule ends. eLife 9, e50155 (2020).
pubmed: 32151315 pmcid: 7064335 doi: 10.7554/eLife.50155
Manka, S. W. & Moores, C. A. The role of tubulin–tubulin lattice contacts in the mechanism of microtubule dynamic instability. Nat. Struct. Mol. Biol. 25, 607–615 (2018).
pubmed: 29967541 pmcid: 6201834 doi: 10.1038/s41594-018-0087-8
LaFrance, B. J. et al. Structural transitions in the GTP cap visualized by cryo-electron microscopy of catalytically inactive microtubules. Proc. Natl Acad. Sci. USA 119 (2022).
Brouhard, G. J. et al. XMAP215 is a processive microtubule polymerase. Cell 132, 79–88 (2008).
pubmed: 18191222 pmcid: 2311386 doi: 10.1016/j.cell.2007.11.043
Feng, C. et al. Patronin-mediated minus end growth is required for dendritic microtubule polarity. J. Cell Biol. 218, 2309–2328 (2019).
pubmed: 31076454 pmcid: 6605808 doi: 10.1083/jcb.201810155
Akhmanova, A. & Steinmetz, M. O. Control of microtubule organization and dynamics: two ends in the limelight. Nat. Rev. Mol. Cell Biol. 16, 711–726 (2015).
pubmed: 26562752 doi: 10.1038/nrm4084
Bouchet, B. P. et al. Mesenchymal cell invasion requires cooperative regulation of persistent microtubule growth by SLAIN2 and CLASP1. Dev. Cell 39, 708–723 (2016).
pubmed: 27939686 pmcid: 5178967 doi: 10.1016/j.devcel.2016.11.009
Grigoriev, I. et al. STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER. Curr. Biol. 18, 177–182 (2008).
pubmed: 18249114 pmcid: 2600655 doi: 10.1016/j.cub.2007.12.050
van der Vaart, B. et al. CFEOM1-associated kinesin KIF21A is a cortical microtubule growth inhibitor. Dev. Cell 27, 145–160 (2013).
pubmed: 24120883 doi: 10.1016/j.devcel.2013.09.010
Homma, N. et al. Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell 114, 229–239 (2003).
pubmed: 12887924 doi: 10.1016/S0092-8674(03)00522-1
Maor-Nof, M. et al. Axonal pruning is actively regulated by the microtubule-destabilizing protein kinesin superfamily protein 2A. Cell Rep. 3, 971–977 (2013).
pubmed: 23562155 doi: 10.1016/j.celrep.2013.03.005
Jaworski, J. et al. Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron 61, 85–100 (2009).
pubmed: 19146815 doi: 10.1016/j.neuron.2008.11.013
Straube, A. & Merdes, A. EB3 regulates microtubule dynamics at the cell cortex and is required for myoblast elongation and fusion. Curr. Biol. 17, 1318–1325 (2007).
pubmed: 17658256 pmcid: 1971230 doi: 10.1016/j.cub.2007.06.058
Hooikaas, P. J. et al. Kinesin-4 KIF21B limits microtubule growth to allow rapid centrosome polarization in T cells. eLife 9, e62876 (2020). This paper shows that keeping microtubule arrays sparse can be important for rapid microtubule reorganization in immune cells.
pubmed: 33346730 pmcid: 7817182 doi: 10.7554/eLife.62876
Muhia, M. et al. The Kinesin KIF21B regulates microtubule dynamics and is essential for neuronal morphology, synapse function, and learning and memory. Cell Rep. 15, 968–977 (2016).
pubmed: 27117409 pmcid: 5305027 doi: 10.1016/j.celrep.2016.03.086
Bearce, E. A., Erdogan, B. & Lowery, L. A. TIPsy tour guides: how microtubule plus-end tracking proteins (+TIPs) facilitate axon guidance. Front. Cell Neurosci. 9, 241 (2015).
pubmed: 26175669 pmcid: 4485311 doi: 10.3389/fncel.2015.00241
Baas, P. W., Rao, A. N., Matamoros, A. J. & Leo, L. Stability properties of neuronal microtubules. Cytoskeleton 73, 442–460 (2016).
pubmed: 26887570 doi: 10.1002/cm.21286
Cuveillier, C. et al. MAP6 is an intraluminal protein that induces neuronal microtubules to coil. Sci. Adv. 6, eaaz4344 (2020). This study demonstrates that the protein responsible for strong stabilization of neuronal microtubules localizes to microtubule lumen and induces their deformation.
pubmed: 32270043 pmcid: 7112752 doi: 10.1126/sciadv.aaz4344
Bodakuntla, S., Jijumon, A. S., Villablanca, C., Gonzalez-Billault, C. & Janke, C. Microtubule-associated proteins: structuring the cytoskeleton. Trends Cell Biol. 29, 804–819 (2019).
pubmed: 31416684 doi: 10.1016/j.tcb.2019.07.004
Freal, A. et al. Feedback-driven assembly of the axon initial segment. Neuron 104, 305–321 (2019).
pubmed: 31474508 pmcid: 6839619 doi: 10.1016/j.neuron.2019.07.029
Feng, C. et al. Trim9 and Klp61F promote polymerization of new dendritic microtubules along parallel microtubules. J. Cell Sci. 134, jcs258437 (2021).
pubmed: 34096607 pmcid: 8214762 doi: 10.1242/jcs.258437
Janson, M. E., de Dood, M. E. & Dogterom, M. Dynamic instability of microtubules is regulated by force. J. Cell Biol. 161, 1029–1034 (2003).
pubmed: 12821641 pmcid: 2173003 doi: 10.1083/jcb.200301147
Xu, Z. et al. Microtubules acquire resistance from mechanical breakage through intralumenal acetylation. Science 356, 328–332 (2017).
pubmed: 28428427 pmcid: 5457157 doi: 10.1126/science.aai8764
Thery, M. & Blanchoin, L. Microtubule self-repair. Curr. Opin. Cell Biol. 68, 144–154 (2021).
pubmed: 33217636 doi: 10.1016/j.ceb.2020.10.012
Schaedel, L. et al. Microtubules self-repair in response to mechanical stress. Nat. Mater. 14, 1156–1163 (2015).
pubmed: 26343914 pmcid: 4620915 doi: 10.1038/nmat4396
Vemu, A. et al. Severing enzymes amplify microtubule arrays through lattice GTP-tubulin incorporation. Science 361, eaau1504 (2018).
pubmed: 30139843 pmcid: 6510489 doi: 10.1126/science.aau1504
Triclin, S. et al. Self-repair protects microtubules from destruction by molecular motors. Nat. Mater. 20, 883–891 (2021).
pubmed: 33479528 pmcid: 7611741 doi: 10.1038/s41563-020-00905-0
Andreu-Carbo, M., Fernandes, S., Velluz, M. C., Kruse, K. & Aumeier, C. Motor usage imprints microtubule stability along the shaft. Dev. Cell 57, 5–18 (2022).
pubmed: 34883065 doi: 10.1016/j.devcel.2021.11.019
Dimitrov, A. et al. Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues. Science 322, 1353–1356 (2008).
pubmed: 18927356 doi: 10.1126/science.1165401
de Forges, H. et al. Localized mechanical stress promotes microtubule rescue. Curr. Biol. 26, 3399–3406 (2016).
pubmed: 27916523 doi: 10.1016/j.cub.2016.10.048
Shima, T. et al. Kinesin-binding-triggered conformation switching of microtubules contributes to polarized transport. J. Cell Biol. 217, 4164–4183 (2018).
pubmed: 30297389 pmcid: 6279379 doi: 10.1083/jcb.201711178
Peet, D. R., Burroughs, N. J. & Cross, R. A. Kinesin expands and stabilizes the GDP-microtubule lattice. Nat. Nanotechnol. 13, 386–391 (2018). Together with Shima et al. (2018), this work convincingly demonstrates that kinesin 1 can cause expansion of the microtubule lattice.
pubmed: 29531331 pmcid: 5937683 doi: 10.1038/s41565-018-0084-4
He, L. et al. Cortical anchoring of the microtubule cytoskeleton is essential for neuron polarity. eLife 9, e55111 (2020).
pubmed: 32293562 pmcid: 7159925 doi: 10.7554/eLife.55111
Dogterom, M. & Koenderink, G. H. Actin–microtubule crosstalk in cell biology. Nat. Rev. Mol. Cell Biol. 20, 38–54 (2019).
pubmed: 30323238 doi: 10.1038/s41580-018-0067-1
Noordstra, I. & Akhmanova, A. Linking cortical microtubule attachment and exocytosis. F1000Res 6, 469 (2017).
pubmed: 28491287 pmcid: 5399970 doi: 10.12688/f1000research.10729.1
Basu, S. et al. CLASP2-dependent microtubule capture at the neuromuscular junction membrane requires LL5β and actin for focal delivery of acetylcholine receptor vesicles. Mol. Biol. Cell 26, 938–951 (2015).
pubmed: 25589673 pmcid: 4342029 doi: 10.1091/mbc.E14-06-1158
Rahimov, F. & Kunkel, L. M. The cell biology of disease: cellular and molecular mechanisms underlying muscular dystrophy. J. Cell Biol. 201, 499–510 (2013).
pubmed: 23671309 pmcid: 3653356 doi: 10.1083/jcb.201212142
Nelson, D. M. et al. Variable rescue of microtubule and physiological phenotypes in mdx muscle expressing different miniaturized dystrophins. Hum. Mol. Genet. 27, 2090–2100 (2018).
pubmed: 29618008 pmcid: 5985723 doi: 10.1093/hmg/ddy113
Gawor, M. & Proszynski, T. J. The molecular cross talk of the dystrophin–glycoprotein complex. Ann. N. Y. Acad. Sci. 1412, 62–72 (2018).
pubmed: 29068540 doi: 10.1111/nyas.13500
Ayalon, G., Davis, J. Q., Scotland, P. B. & Bennett, V. An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan. Cell 135, 1189–1200 (2008).
pubmed: 19109891 doi: 10.1016/j.cell.2008.10.018
Leterrier, C. et al. End-binding proteins EB3 and EB1 link microtubules to ankyrin G in the axon initial segment. Proc. Natl Acad. Sci. USA 108, 8826–8831 (2011).
pubmed: 21551097 pmcid: 3102358 doi: 10.1073/pnas.1018671108
Shaw, R. M. et al. Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128, 547–560 (2007).
pubmed: 17289573 pmcid: 1955433 doi: 10.1016/j.cell.2006.12.037
Roll-Mecak, A. The tubulin code in microtubule dynamics and information encoding. Dev. Cell 54, 7–20 (2020).
pubmed: 32634400 doi: 10.1016/j.devcel.2020.06.008
Janke, C. & Magiera, M. M. The tubulin code and its role in controlling microtubule properties and functions. Nat. Rev. Mol. Cell Biol. 21, 307–326 (2020).
pubmed: 32107477 doi: 10.1038/s41580-020-0214-3
Katrukha, E. A., Jurriens, D., Salas Pastene, D. M. & Kapitein, L. C. Quantitative mapping of dense microtubule arrays in mammalian neurons. eLife 10, e67925 (2021). This paper uses stimulated emission depletion and expansion microscopy to measure the distribution and relative abundance of different microtubule subsets in dendrites.
pubmed: 34313224 pmcid: 8416025 doi: 10.7554/eLife.67925
Peris, L. et al. Motor-dependent microtubule disassembly driven by tubulin tyrosination. J. Cell Biol. 185, 1159–1166 (2009).
pubmed: 19564401 pmcid: 2712961 doi: 10.1083/jcb.200902142
Valenstein, M. L. & Roll-Mecak, A. Graded control of microtubule severing by tubulin glutamylation. Cell 164, 911–921 (2016).
pubmed: 26875866 pmcid: 6459029 doi: 10.1016/j.cell.2016.01.019
Cai, D., McEwen, D. P., Martens, J. R., Meyhofer, E. & Verhey, K. J. Single molecule imaging reveals differences in microtubule track selection between Kinesin motors. PLoS Biol. 7, e1000216 (2009).
pubmed: 19823565 pmcid: 2749942 doi: 10.1371/journal.pbio.1000216
Guardia, C. M., Farias, G. G., Jia, R., Pu, J. & Bonifacino, J. S. BORC functions upstream of Kinesins 1 and 3 to coordinate regional movement of lysosomes along different microtubule tracks. Cell Rep. 17, 1950–1961 (2016).
pubmed: 27851960 pmcid: 5136296 doi: 10.1016/j.celrep.2016.10.062
Tas, R. P. et al. Differentiation between oppositely oriented microtubules controls polarized neuronal transport. Neuron 96, 1264–1271 (2017). This paper introduces Motor-PAINT and demonstrates that different microtubule subsets have different orientations within dendrites.
pubmed: 29198755 pmcid: 5746200 doi: 10.1016/j.neuron.2017.11.018
Sirajuddin, M., Rice, L. M. & Vale, R. D. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat. Cell Biol. 16, 335–344 (2014).
pubmed: 24633327 pmcid: 4117587 doi: 10.1038/ncb2920
Monroy, B. Y. et al. A combinatorial MAP code dictates polarized microtubule transport. Dev. Cell 53, 60–72 (2020). This paper dissects the effects of an array of neuronal MAPs on the motility of several types of transporting kinesins.
pubmed: 32109385 pmcid: 7181406 doi: 10.1016/j.devcel.2020.01.029
Magiera, M. M., Singh, P., Gadadhar, S. & Janke, C. Tubulin posttranslational modifications and emerging links to human disease. Cell 173, 1323–1327 (2018).
pubmed: 29856952 doi: 10.1016/j.cell.2018.05.018
Magiera, M. M. et al. Excessive tubulin polyglutamylation causes neurodegeneration and perturbs neuronal transport. EMBO J. 37, e100440 (2018).
pubmed: 30420556 pmcid: 6276888 doi: 10.15252/embj.2018100440
Shashi, V. et al. Loss of tubulin deglutamylase CCP1 causes infantile-onset neurodegeneration. EMBO J. 37, e100540 (2018). Together with Magiera et al. (EMBO J, 2018), this work provides one of the best examples of how misregulation of microtubule post-translational modifications can lead to human disease.
pubmed: 30420557 pmcid: 6276871 doi: 10.15252/embj.2018100540
Bodakuntla, S. et al. Tubulin polyglutamylation is a general traffic-control mechanism in hippocampal neurons. J. Cell Sci. 133, jcs241802 (2020).
pubmed: 31932508 doi: 10.1242/jcs.241802
Bodakuntla, S. et al. Distinct roles of α- and β-tubulin polyglutamylation in controlling axonal transport and in neurodegeneration. EMBO J. 40, e108498 (2021).
pubmed: 34309047 doi: 10.15252/embj.2021108498
Gadadhar, S. et al. Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility. Science 371, eabd4914 (2021).
pubmed: 33414192 doi: 10.1126/science.abd4914
Lechler, T. & Mapelli, M. Spindle positioning and its impact on vertebrate tissue architecture and cell fate. Nat. Rev. Mol. Cell Biol. 22, 691–708 (2021).
pubmed: 34158639 doi: 10.1038/s41580-021-00384-4
Jimenez, A. J. et al. Acto-myosin network geometry defines centrosome position. Curr. Biol. 31, 1206–1220 (2021).
pubmed: 33609453 doi: 10.1016/j.cub.2021.01.002
Yi, J. et al. Centrosome repositioning in T cells is biphasic and driven by microtubule end-on capture-shrinkage. J. Cell Biol. 202, 779–792 (2013).
pubmed: 23979719 pmcid: 3760611 doi: 10.1083/jcb.201301004
Zheng, Y. et al. Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nat. Cell Biol. 10, 1172–1180 (2008).
pubmed: 18758451 pmcid: 2588425 doi: 10.1038/ncb1777
del Castillo, U., Winding, M., Lu, W. & Gelfand, V. I. Interplay between kinesin-1 and cortical dynein during axonal outgrowth and microtubule organization in Drosophila neurons. eLife 4, e10140 (2015).
pubmed: 26615019 pmcid: 4739764 doi: 10.7554/eLife.10140
Del Castillo, U., Muller, H. J. & Gelfand, V. I. Kinetochore protein Spindly controls microtubule polarity in Drosophila axons. Proc. Natl Acad. Sci. USA 117, 12155–12163 (2020).
pubmed: 32430325 pmcid: 7275735 doi: 10.1073/pnas.2005394117
Lu, W. & Gelfand, V. I. Moonlighting motors: kinesin, dynein, and cell polarity. Trends Cell Biol. 27, 505–514 (2017).
pubmed: 28284467 pmcid: 5476484 doi: 10.1016/j.tcb.2017.02.005
Palacios, I. M. & St Johnston, D. Kinesin light chain-independent function of the Kinesin heavy chain in cytoplasmic streaming and posterior localisation in the Drosophila oocyte. Development 129, 5473–5485 (2002).
pubmed: 12403717 doi: 10.1242/dev.00119
Lu, W., Fox, P., Lakonishok, M., Davidson, M. W. & Gelfand, V. I. Initial neurite outgrowth in Drosophila neurons is driven by kinesin-powered microtubule sliding. Curr. Biol. 23, 1018–1023 (2013).
pubmed: 23707427 pmcid: 3676710 doi: 10.1016/j.cub.2013.04.050
Mattie, F. J. et al. Directed microtubule growth, +TIPs, and kinesin-2 are required for uniform microtubule polarity in dendrites. Curr. Biol. 20, 2169–2177 (2010).
pubmed: 21145742 pmcid: 3035180 doi: 10.1016/j.cub.2010.11.050
Schatzle, P. et al. Activity-dependent actin remodeling at the base of dendritic spines promotes microtubule entry. Curr. Biol. 28, 2081–2093 (2018).
pubmed: 29910073 doi: 10.1016/j.cub.2018.05.004
Merriam, E. B. et al. Synaptic regulation of microtubule dynamics in dendritic spines by calcium, F-actin, and drebrin. J. Neurosci. 33, 16471–16482 (2013).
pubmed: 24133252 pmcid: 3797370 doi: 10.1523/JNEUROSCI.0661-13.2013
Slater, P. G. et al. XMAP215 promotes microtubule-F-actin interactions to regulate growth cone microtubules during axon guidance in Xenopus laevis. J. Cell Sci. 132, jcs224311 (2019).
pubmed: 30890650 pmcid: 6526707 doi: 10.1242/jcs.224311
Sanchez-Huertas, C. et al. The +TIP Navigator-1 is an actin-microtubule crosslinker that regulates axonal growth cone motility. J. Cell Biol. 219, e201905199 (2020).
pubmed: 32497170 pmcid: 7480110 doi: 10.1083/jcb.201905199
Kundu, T., Dutta, P., Nagar, D., Maiti, S. & Ghose, A. Coupling of dynamic microtubules to F-actin by Fmn2 regulates chemotaxis of neuronal growth cones. J. Cell Sci. 134, jcs252916 (2021).
pubmed: 34313311 doi: 10.1242/jcs.252916
Burute, M. & Kapitein, L. C. Cellular logistics: unraveling the interplay between microtubule organization and intracellular transport. Annu. Rev. Cell Dev. Biol. 35, 29–54 (2019).
pubmed: 31394046 doi: 10.1146/annurev-cellbio-100818-125149
Douanne, T. & Griffiths, G. M. Cytoskeletal control of the secretory immune synapse. Curr. Opin. Cell Biol. 71, 87–94 (2021).
pubmed: 33711784 doi: 10.1016/j.ceb.2021.02.008
Kopf, A. et al. Microtubules control cellular shape and coherence in amoeboid migrating cells. J. Cell Biol. 219, e201907154 (2020). This study provides convincing support for the concept that one of the functions of the microtubule network is to preserve the integrity of highly branched cells during cell migration in complex environments.
pubmed: 32379884 pmcid: 7265309 doi: 10.1083/jcb.201907154
Vertii, A. et al. The centrosome undergoes Plk1-independent interphase maturation during inflammation and mediates cytokine release. Dev. Cell 37, 377–386 (2016).
pubmed: 27219065 doi: 10.1016/j.devcel.2016.04.023
Etienne-Manneville, S. Microtubules in cell migration. Annu. Rev. Cell Dev. Biol. 29, 471–499 (2013).
pubmed: 23875648 doi: 10.1146/annurev-cellbio-101011-155711
Martin, M., Veloso, A., Wu, J., Katrukha, E. A. & Akhmanova, A. Control of endothelial cell polarity and sprouting angiogenesis by non-centrosomal microtubules. eLife 7, e 33864 (2018).
doi: 10.7554/eLife.33864
Pasquier, E., André, N. & Braguer, D. Targeting microtubules to inhibit angiogenesis and disrupt tumour vasculature: implications for cancer treatment. Curr. Cancer Drug Targets 7, 566–581 (2007).
pubmed: 17896922 doi: 10.2174/156800907781662266
Blasky, A. J., Mangan, A. & Prekeris, R. Polarized protein transport and lumen formation during epithelial tissue morphogenesis. Annu. Rev. Cell Dev. Biol. 31, 575–591 (2015).
pubmed: 26359775 pmcid: 4927002 doi: 10.1146/annurev-cellbio-100814-125323
Booth, A. J. R., Blanchard, G. B., Adams, R. J. & Roper, K. A dynamic microtubule cytoskeleton directs medial actomyosin function during tube formation. Dev. Cell 29, 562–576 (2014).
pubmed: 24914560 pmcid: 4064686 doi: 10.1016/j.devcel.2014.03.023
Henderson, D. J., Long, D. A. & Dean, C. H. Planar cell polarity in organ formation. Curr. Opin. Cell Biol. 55, 96–103 (2018).
pubmed: 30015152 doi: 10.1016/j.ceb.2018.06.011
Matis, M., Russler-Germain, D. A., Hu, Q., Tomlin, C. J. & Axelrod, J. D. Microtubules provide directional information for core PCP function. eLife 3, e02893 (2014). This paper combines experiments with modelling to demonstrate the interplay between planar cell polarity signalling and the apical microtubule cytoskeleton.
pubmed: 25124458 pmcid: 4151085 doi: 10.7554/eLife.02893
Shimada, Y., Yonemura, S., Ohkura, H., Strutt, D. & Uemura, T. Polarized transport of Frizzled along the planar microtubule arrays in Drosophila wing epithelium. Dev. Cell 10, 209–222 (2006).
pubmed: 16459300 doi: 10.1016/j.devcel.2005.11.016
Kimura, T., Saito, H., Kawasaki, M. & Takeichi, M. CAMSAP3 is required for mTORC1-dependent ependymal cell growth and lateral ventricle shaping in mouse brains. Development 148, dev195073 (2021).
pubmed: 33462112 doi: 10.1242/dev.195073
Herawati, E. et al. Multiciliated cell basal bodies align in stereotypical patterns coordinated by the apical cytoskeleton. J. Cell Biol. 214, 571–586 (2016).
pubmed: 27573463 pmcid: 5004441 doi: 10.1083/jcb.201601023
Oddoux, S. et al. Misplaced Golgi elements produce randomly oriented microtubules and aberrant cortical arrays of microtubules in dystrophic skeletal muscle fibers. Front. Cell Dev. Biol. 7, 176 (2019).
pubmed: 31620435 pmcid: 6759837 doi: 10.3389/fcell.2019.00176
Robison, P. et al. Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes. Science 352, aaf0659 (2016). This paper demonstrates that specific interactions between microtubules and intermediate filaments contribute to the mechanics of heart cell contraction.
pubmed: 27102488 pmcid: 5441927 doi: 10.1126/science.aaf0659
Salomon, A. K. et al. Desmin intermediate filaments and tubulin detyrosination stabilize growing microtubules in the cardiomyocyte. Preprint at bioRxiv https://doi.org/10.1101/2021.05.26.445641 (2021).
doi: 10.1101/2021.05.26.445641
Yu, X. et al. MARK4 controls ischaemic heart failure through microtubule detyrosination. Nature 594, 560–565 (2021).
pubmed: 34040253 pmcid: 7612144 doi: 10.1038/s41586-021-03573-5
Zile, M. R. et al. Cardiocyte cytoskeleton in patients with left ventricular pressure overload hypertrophy. J. Am. Coll. Cardiol. 37, 1080–1084 (2001).
pubmed: 11263612 doi: 10.1016/S0735-1097(00)01207-9
Chen, C. Y. et al. Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure. Nat. Med. 24, 1225–1233 (2018).
pubmed: 29892068 doi: 10.1038/s41591-018-0046-2
Aiken, J. & Holzbaur, E. L. F. Cytoskeletal regulation guides neuronal trafficking to effectively supply the synapse. Curr. Biol. 31, R633–R650 (2021).
pubmed: 34033795 pmcid: 8360495 doi: 10.1016/j.cub.2021.02.024
Koppers, M. & Farias, G. G. Organelle distribution in neurons: logistics behind polarized transport. Curr. Opin. Cell Biol. 71, 46–54 (2021).
pubmed: 33706233 doi: 10.1016/j.ceb.2021.02.004
Baas, P. W. Microtubules and neuronal polarity: lessons from mitosis. Neuron 22, 23–31 (1999).
pubmed: 10027286 doi: 10.1016/S0896-6273(00)80675-3
Hertzler, J. I. et al. Kinetochore proteins suppress neuronal microtubule dynamics and promote dendrite regeneration. Mol. Biol. Cell 31, 2125–2138 (2020).
pubmed: 32673176 pmcid: 7530905 doi: 10.1091/mbc.E20-04-0237-T
Cheerambathur, D. K. et al. The kinetochore–microtubule coupling machinery is repurposed in sensory nervous system morphogenesis. Dev. Cell 48, 864–872 (2019).
pubmed: 30827898 pmcid: 6436928 doi: 10.1016/j.devcel.2019.02.002
Zhao, G., Oztan, A., Ye, Y. & Schwarz, T. L. Kinetochore proteins have a post-mitotic function in neurodevelopment. Dev. Cell 48, 873–882 (2019).
pubmed: 30827899 pmcid: 7375515 doi: 10.1016/j.devcel.2019.02.003
Guedes-Dias, P. & Holzbaur, E. L. F. Axonal transport: driving synaptic function. Science 366, eaaw9997 (2019).
pubmed: 31601744 pmcid: 6996143 doi: 10.1126/science.aaw9997
Yogev, S., Cooper, R., Fetter, R., Horowitz, M. & Shen, K. Microtubule organization determines axonal transport dynamics. Neuron 92, 449–460 (2016). This paper carefully analyses the number and length of microtubules in worm axons and shows that cargoes frequently pause at microtubule ends.
pubmed: 27764672 pmcid: 5432135 doi: 10.1016/j.neuron.2016.09.036
Guedes-Dias, P. et al. Kinesin-3 responds to local microtubule dynamics to target synaptic cargo delivery to the presynapse. Curr. Biol. 29, 268–282 (2019).
pubmed: 30612907 pmcid: 6342647 doi: 10.1016/j.cub.2018.11.065
Nirschl, J. J., Magiera, M. M., Lazarus, J. E., Janke, C. & Holzbaur, E. L. α-Tubulin tyrosination and CLIP-170 phosphorylation regulate the initiation of dynein-driven transport in neurons. Cell Rep. 14, 2637–2652 (2016).
pubmed: 26972003 pmcid: 4819336 doi: 10.1016/j.celrep.2016.02.046
Moughamian, A. J., Osborn, G. E., Lazarus, J. E., Maday, S. & Holzbaur, E. L. Ordered recruitment of dynactin to the microtubule plus-end is required for efficient initiation of retrograde axonal transport. J. Neurosci. 33, 13190–13203 (2013).
pubmed: 23926272 pmcid: 3735891 doi: 10.1523/JNEUROSCI.0935-13.2013
Stone, M. C., Roegiers, F. & Rolls, M. M. Microtubules have opposite orientation in axons and dendrites of Drosophila neurons. Mol. Biol. Cell 19, 4122–4129 (2008).
pubmed: 18667536 pmcid: 2555934 doi: 10.1091/mbc.e07-10-1079
Goodwin, P. R., Sasaki, J. M. & Juo, P. Cyclin-dependent kinase 5 regulates the polarized trafficking of neuropeptide-containing dense-core vesicles in Caenorhabditis elegans motor neurons. J. Neurosci. 32, 8158–8172 (2012).
pubmed: 22699897 pmcid: 3392131 doi: 10.1523/JNEUROSCI.0251-12.2012
Harterink, M. et al. Light-controlled intracellular transport in Caenorhabditis elegans. Curr. Biol. 26, R153–R154 (2016).
pubmed: 26906482 doi: 10.1016/j.cub.2015.12.016
Baas, P. W., Deitch, J. S., Black, M. M. & Banker, G. A. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl Acad. Sci. USA 85, 8335–8339 (1988). This paper demonstrates that the microtubule array in dendrites from cultured neurons has mixed polarity.
pubmed: 3054884 pmcid: 282424 doi: 10.1073/pnas.85.21.8335
Yau, K. W. et al. Dendrites in vitro and in vivo contain microtubules of opposite polarity and axon formation correlates with uniform plus-end-out microtubule orientation. J. Neurosci. 36, 1071–1085 (2016). This paper demonstrates mixed polarity of the microtubule arrays in dendrites in brain tissue and uses laser-based microsurgery to quantify them.
pubmed: 26818498 pmcid: 4728718 doi: 10.1523/JNEUROSCI.2430-15.2016
Ayloo, S., Guedes-Dias, P., Ghiretti, A. E. & Holzbaur, E. L. F. Dynein efficiently navigates the dendritic cytoskeleton to drive the retrograde trafficking of BDNF/TrkB signaling endosomes. Mol. Biol. Cell 28, 2543–2554 (2017).
pubmed: 28720664 pmcid: 5597326 doi: 10.1091/mbc.e17-01-0068
Kapitein, L. C. et al. Mixed microtubules steer dynein-driven cargo transport into dendrites. Curr. Biol. 20, 290–299 (2010).
pubmed: 20137950 doi: 10.1016/j.cub.2009.12.052
van Beuningen, S. F. B. et al. TRIM46 controls neuronal polarity and axon specification by driving the formation of parallel microtubule arrays. Neuron 88, 1208–1226 (2015).
pubmed: 26671463 doi: 10.1016/j.neuron.2015.11.012
Rao, A. N. et al. Cytoplasmic dynein transports axonal microtubules in a polarity-sorting manner. Cell Rep. 19, 2210–2219 (2017).
pubmed: 28614709 pmcid: 5523108 doi: 10.1016/j.celrep.2017.05.064
Muralidharan, H. & Baas, P. W. Mitotic motor KIFC1 is an organizer of microtubules in the axon. J. Neurosci. 39, 3792–3811 (2019).
pubmed: 30804089 pmcid: 6520510 doi: 10.1523/JNEUROSCI.3099-18.2019
Yau, K. W. et al. Microtubule minus-end binding protein CAMSAP2 controls axon specification and dendrite development. Neuron 82, 1058–1073 (2014).
pubmed: 24908486 doi: 10.1016/j.neuron.2014.04.019
Cao, Y. et al. Microtubule minus-end binding protein CAMSAP2 and Kinesin-14 motor KIFC3 control dendritic microtubule organization. Curr. Biol. 30, 899–908 (2020).
pubmed: 32084403 pmcid: 7063570 doi: 10.1016/j.cub.2019.12.056
Boiarska, Z. & Passarella, D. Microtubule-targeting agents and neurodegeneration. Drug Discov. Today 26, 604–615 (2021).
pubmed: 33279455 doi: 10.1016/j.drudis.2020.11.033
Consolati, T. et al. Microtubule nucleation properties of single human γTuRCs explained by their cryo-EM structure. Dev. Cell 53, 603–617 (2020).
pubmed: 32433913 pmcid: 7280788 doi: 10.1016/j.devcel.2020.04.019
Liu, P. et al. Insights into the assembly and activation of the microtubule nucleator γ-TuRC. Nature 578, 467–471 (2020).
pubmed: 31856152 doi: 10.1038/s41586-019-1896-6
Wieczorek, M. et al. Asymmetric molecular architecture of the human γ-tubulin ring complex. Cell 180, 165–175 (2020).
pubmed: 31862189 doi: 10.1016/j.cell.2019.12.007
Kuo, Y. W., Trottier, O., Mahamdeh, M. & Howard, J. Spastin is a dual-function enzyme that severs microtubules and promotes their regrowth to increase the number and mass of microtubules. Proc. Natl Acad. Sci. USA 116, 5533–5541 (2019).
pubmed: 30837315 pmcid: 6431158 doi: 10.1073/pnas.1818824116
Kuo, Y. W. & Howard, J. Cutting, amplifying, and aligning microtubules with severing enzymes. Trends Cell Biol. 31, 50–61 (2021).
pubmed: 33183955 doi: 10.1016/j.tcb.2020.10.004
Jiang, K. et al. Microtubule minus-end regulation at spindle poles by an ASPM–katanin complex. Nat. Cell Biol. 19, 480–492 (2017).
pubmed: 28436967 pmcid: 5458804 doi: 10.1038/ncb3511
Chakraborty, S., Mahamid, J. & Baumeister, W. Cryoelectron tomography reveals nanoscale organization of the cytoskeleton and its relation to microtubule curvature inside cells. Structure 28, 991–1003 (2020).
pubmed: 32579947 doi: 10.1016/j.str.2020.05.013
Muller, A. et al. 3D FIB-SEM reconstruction of microtubule–organelle interaction in whole primary mouse β cells. J. Cell Biol. 220, e202010039 (2021). This study uses electron microscopy to visualize the complete microtubule cytoskeleton and membrane organelles in entire β cells.
pubmed: 33326005 doi: 10.1083/jcb.202010039
Liu, S., Hoess, P. & Ries, J. Super-resolution microscopy for structural cell biology. Annu. Rev. Biophys. 51, https://doi.org/10.1146/annurev-biophys-102521-112912 (2022).
Chen, F., Tillberg, P. W. & Boyden, E. S. Optical imaging. Expansion microscopy. Science 347, 543–548 (2015).
pubmed: 25592419 pmcid: 4312537 doi: 10.1126/science.1260088
Gros, O. J., Damstra, H. G. J., Kapitein, L. C., Akhmanova, A. & Berger, F. Dynein self-organizes while translocating the centrosome in T-cells. Mol. Biol. Cell 32, 855–868 (2021).
pubmed: 33689395 pmcid: 8108531 doi: 10.1091/mbc.E20-10-0668
Damstra, H. G. J. et al. Visualizing cellular and tissue ultrastructure using ten-fold robust expansion microscopy (TREx). eLife 11, e73775 (2022).
pubmed: 35179128 pmcid: 8887890 doi: 10.7554/eLife.73775

Auteurs

Anna Akhmanova (A)

Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands. a.akhmanova@uu.nl.

Lukas C Kapitein (LC)

Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands. l.kapitein@uu.nl.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH