Mechanisms of microtubule organization in differentiated animal cells.
Journal
Nature reviews. Molecular cell biology
ISSN: 1471-0080
Titre abrégé: Nat Rev Mol Cell Biol
Pays: England
ID NLM: 100962782
Informations de publication
Date de publication:
08 2022
08 2022
Historique:
accepted:
07
03
2022
pubmed:
7
4
2022
medline:
27
7
2022
entrez:
6
4
2022
Statut:
ppublish
Résumé
Microtubules are polarized cytoskeletal filaments that serve as tracks for intracellular transport and form a scaffold that positions organelles and other cellular components and modulates cell shape and mechanics. In animal cells, the geometry, density and directionality of microtubule networks are major determinants of cellular architecture, polarity and proliferation. In dividing cells, microtubules form bipolar spindles that pull chromosomes apart, whereas in interphase cells, microtubules are organized in a cell type-specific fashion, which strongly correlates with cell physiology. In motile cells, such as fibroblasts and immune cells, microtubules are organized as radial asters, whereas in immotile epithelial and neuronal cells and in muscles, microtubules form parallel or antiparallel arrays and cortical meshworks. Here, we review recent work addressing how the formation of such microtubule networks is driven by the plethora of microtubule regulatory proteins. These include proteins that nucleate or anchor microtubule ends at different cellular structures and those that sever or move microtubules, as well as regulators of microtubule elongation, stability, bundling or modifications. The emerging picture, although still very incomplete, shows a remarkable diversity of cell-specific mechanisms that employ conserved building blocks to adjust microtubule organization in order to facilitate different cellular functions.
Identifiants
pubmed: 35383336
doi: 10.1038/s41580-022-00473-y
pii: 10.1038/s41580-022-00473-y
doi:
Substances chimiques
Microtubule-Associated Proteins
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
541-558Informations de copyright
© 2022. Springer Nature Limited.
Références
Kapitein, L. C. & Hoogenraad, C. C. Building the neuronal microtubule cytoskeleton. Neuron 87, 492–506 (2015).
pubmed: 26247859
doi: 10.1016/j.neuron.2015.05.046
Cuenca-Zamora, E. J., Ferrer-Marin, F., Rivera, J. & Teruel-Montoya, R. Tubulin in platelets: when the shape matters. Int. J. Mol. Sci. 20, 3484 (2019).
pmcid: 6678703
doi: 10.3390/ijms20143484
Caporizzo, M. A., Chen, C. Y. & Prosser, B. L. Cardiac microtubules in health and heart disease. Exp. Biol. Med. 244, 1255–1272 (2019).
doi: 10.1177/1535370219868960
Mitchison, T. J. & Field, C. M. Self-organization of cellular units. Annu. Rev. Cell Dev. Biol. 37, 23–42 (2021).
pubmed: 34186005
pmcid: 9059766
doi: 10.1146/annurev-cellbio-120319-025356
Roostalu, J. & Surrey, T. Microtubule nucleation: beyond the template. Nat. Rev. Mol. Cell Biol. 18, 702–710 (2017).
pubmed: 28831203
doi: 10.1038/nrm.2017.75
Tovey, C. A. & Conduit, P. T. Microtubule nucleation by γ-tubulin complexes and beyond. Essays Biochem. 62, 765–780 (2018).
pubmed: 30315097
pmcid: 6281477
doi: 10.1042/EBC20180028
Lin, T. C., Neuner, A. & Schiebel, E. Targeting of γ-tubulin complexes to microtubule organizing centers: conservation and divergence. Trends Cell Biol. 25, 296–307 (2015).
pubmed: 25544667
doi: 10.1016/j.tcb.2014.12.002
Hannak, E. et al. The kinetically dominant assembly pathway for centrosomal asters in Caenorhabditis elegans is γ-tubulin dependent. J. Cell Biol. 157, 591–602 (2002).
pubmed: 12011109
pmcid: 2173857
doi: 10.1083/jcb.200202047
Rogers, G. C., Rusan, N. M., Peifer, M. & Rogers, S. L. A multicomponent assembly pathway contributes to the formation of acentrosomal microtubule arrays in interphase Drosophila cells. Mol. Biol. Cell 19, 3163–3178 (2008).
pubmed: 18463166
pmcid: 2441692
doi: 10.1091/mbc.e07-10-1069
Tsuchiya, K. & Goshima, G. Microtubule-associated proteins promote microtubule generation in the absence of γ-tubulin in human colon cancer cells. J. Cell Biol. 220, e202104114 (2021).
pubmed: 34779859
pmcid: 8598081
doi: 10.1083/jcb.202104114
Wang, S. et al. NOCA-1 functions with γ-tubulin and in parallel to Patronin to assemble non-centrosomal microtubule arrays in C. elegans. eLife 4, e08649 (2015). This study demonstrates how two pathways of microtubule minus-end organization can synergize or work in parallel to form non-centrosomal microtubule arrays in different cell types.
pubmed: 26371552
pmcid: 4608005
doi: 10.7554/eLife.08649
Sallee, M. D., Zonka, J. C., Skokan, T. D., Raftrey, B. C. & Feldman, J. L. Tissue-specific degradation of essential centrosome components reveals distinct microtubule populations at microtubule organizing centers. PLoS Biol. 16, e2005189 (2018).
pubmed: 30080857
pmcid: 6103517
doi: 10.1371/journal.pbio.2005189
Zheng, Y. et al. A perinuclear microtubule-organizing centre controls nuclear positioning and basement membrane secretion. Nat. Cell Biol. 22, 297–309 (2020). This paper describes an unconventional, γ-TuRC-independent pathway of microtubule organization acting at the nuclear envelope of fly fat body cells.
pubmed: 32066907
pmcid: 7161059
doi: 10.1038/s41556-020-0470-7
King, M. R. & Petry, S. Phase separation of TPX2 enhances and spatially coordinates microtubule nucleation. Nat. Commun. 11, 270 (2020).
pubmed: 31937751
pmcid: 6959270
doi: 10.1038/s41467-019-14087-0
Woodruff, J. B. et al. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell 169, 1066–1077 (2017).
pubmed: 28575670
doi: 10.1016/j.cell.2017.05.028
Roostalu, J., Cade, N. I. & Surrey, T. Complementary activities of TPX2 and chTOG constitute an efficient importin-regulated microtubule nucleation module. Nat. Cell Biol. 17, 1422–1434 (2015).
pubmed: 26414402
pmcid: 4826748
doi: 10.1038/ncb3241
Manka, S. W. & Moores, C. A. Pseudo-repeats in doublecortin make distinct mechanistic contributions to microtubule regulation. EMBO Rep. 21, e51534 (2020).
pubmed: 33051979
pmcid: 7726794
doi: 10.15252/embr.202051534
Aher, A. et al. CLASP mediates microtubule repair by restricting lattice damage and regulating tubulin incorporation. Curr. Biol. 30, 2175–2183 (2020).
pubmed: 32359430
pmcid: 7280784
doi: 10.1016/j.cub.2020.03.070
Abal, M. et al. Microtubule release from the centrosome in migrating cells. J. Cell Biol. 159, 731–737 (2002).
pubmed: 12473683
pmcid: 2173398
doi: 10.1083/jcb.200207076
Goldspink, D. A. et al. Ninein is essential for apico-basal microtubule formation and CLIP-170 facilitates its redeployment to non-centrosomal microtubule organizing centres. Open. Biol. 7, 160274 (2017).
pubmed: 28179500
pmcid: 5356440
doi: 10.1098/rsob.160274
Delgehyr, N., Sillibourne, J. & Bornens, M. Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J. Cell Sci. 118, 1565–1575 (2005).
pubmed: 15784680
doi: 10.1242/jcs.02302
Lechler, T. & Fuchs, E. Desmoplakin: an unexpected regulator of microtubule organization in the epidermis. J. Cell Biol. 176, 147–154 (2007).
pubmed: 17227889
pmcid: 2063934
doi: 10.1083/jcb.200609109
Lecland, N., Hsu, C. Y., Chemin, C., Merdes, A. & Bierkamp, C. Epidermal development requires ninein for spindle orientation and cortical microtubule organization. Life Sci. Alliance 2, e201900373 (2019).
pubmed: 30923192
pmcid: 6441496
doi: 10.26508/lsa.201900373
Meng, W., Mushika, Y., Ichii, T. & Takeichi, M. Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell–cell contacts. Cell 135, 948–959 (2008). This landmark study presents the first functional description of a CAMSAP/Patronin family member and shows that it is involved in microtubule organization at cell–cell junctions.
pubmed: 19041755
doi: 10.1016/j.cell.2008.09.040
Goodwin, S. S. & Vale, R. D. Patronin regulates the microtubule network by protecting microtubule minus ends. Cell 143, 263–274 (2010).
pubmed: 20946984
pmcid: 3008421
doi: 10.1016/j.cell.2010.09.022
Jiang, K. et al. Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition. Dev. Cell 28, 295–309 (2014).
pubmed: 24486153
doi: 10.1016/j.devcel.2014.01.001
Hernandez-Vega, A. et al. Local nucleation of microtubule bundles through tubulin concentration into a condensed tau phase. Cell Rep. 20, 2304–2312 (2017).
pubmed: 28877466
pmcid: 5828996
doi: 10.1016/j.celrep.2017.08.042
Imasaki, T. et al. CAMSAP2 organizes a γ-tubulin-independent microtubule nucleation centre. Preprint at bioRxiv https://doi.org/10.1101/2021.03.01.433304 (2021).
doi: 10.1101/2021.03.01.433304
Wu, J. et al. Molecular pathway of microtubule organization at the Golgi apparatus. Dev. Cell 39, 44–60 (2016). This study provides a comprehensive analysis of the pathways of microtubule nucleation and anchoring at the Golgi apparatus.
pubmed: 27666745
doi: 10.1016/j.devcel.2016.08.009
Coquand, L. et al. CAMSAPs organize an acentrosomal microtubule network from basal varicosities in radial glial cells. J. Cell Biol. 220, e202003151 (2021).
pubmed: 34019079
pmcid: 8144914
doi: 10.1083/jcb.202003151
Noordstra, I. et al. Control of apico-basal epithelial polarity by the microtubule minus-end-binding protein CAMSAP3 and spectraplakin ACF7. J. Cell Sci. 129, 4278–4288 (2016).
pubmed: 27802168
Khanal, I., Elbediwy, A., Diaz de la Loza Mdel, C., Fletcher, G. C. & Thompson, B. J. Shot and Patronin polarise microtubules to direct membrane traffic and biogenesis of microvilli in epithelia. J. Cell Sci. 129, 2651–2659 (2016).
pubmed: 27231092
pmcid: 4958304
Martin, M. & Akhmanova, A. Coming into focus: mechanisms of microtubule minus-end organization. Trends Cell Biol. 28, 574–588 (2018).
pubmed: 29571882
doi: 10.1016/j.tcb.2018.02.011
Dong, C. et al. CAMSAP3 accumulates in the pericentrosomal area and accompanies microtubule release from the centrosome via katanin. J. Cell Sci. 130, 1709–1715 (2017).
pubmed: 28386021
Gillard, G., Girdler, G. & Roper, K. A release-and-capture mechanism generates an essential non-centrosomal microtubule array during tube budding. Nat. Commun. 12, 4096 (2021). This paper shows how a microtubule array formed by severing and minus-end stabilization affects tissue morphogenesis.
pubmed: 34215746
pmcid: 8253823
doi: 10.1038/s41467-021-24332-0
Muroyama, A., Seldin, L. & Lechler, T. Divergent regulation of functionally distinct γ-tubulin complexes during differentiation. J. Cell Biol. 213, 679–692 (2016). This paper provides important insights into switching from a centrosomal to a non-centrosomal microtubule array during cell differentiation and into the role of γ-TuRC-associated proteins in this process.
pubmed: 27298324
pmcid: 4915192
doi: 10.1083/jcb.201601099
Stiess, M. et al. Axon extension occurs independently of centrosomal microtubule nucleation. Science 327, 704–707 (2010).
pubmed: 20056854
doi: 10.1126/science.1182179
Muroyama, A. & Lechler, T. Microtubule organization, dynamics and functions in differentiated cells. Development 144, 3012–3021 (2017).
pubmed: 28851722
pmcid: 5611961
doi: 10.1242/dev.153171
Zhang, X. et al. Cell-type-specific alternative splicing governs cell fate in the developing cerebral cortex. Cell 166, 1147–1162 (2016).
pubmed: 27565344
pmcid: 5248659
doi: 10.1016/j.cell.2016.07.025
Zhu, X. & Kaverina, I. Golgi as an MTOC: making microtubules for its own good. Histochem. Cell Biol. 140, 361–367 (2013).
pubmed: 23821162
pmcid: 3748218
doi: 10.1007/s00418-013-1119-4
Liang, X. et al. Growth cone-localized microtubule organizing center establishes microtubule orientation in dendrites. eLife 9, e56547 (2020).
pubmed: 32657271
pmcid: 7375809
doi: 10.7554/eLife.56547
Bernabe-Rubio, M. & Alonso, M. A. Routes and machinery of primary cilium biogenesis. Cell Mol. Life Sci. 74, 4077–4095 (2017).
pubmed: 28624967
doi: 10.1007/s00018-017-2570-5
Pitaval, A. et al. Microtubule stabilization drives 3D centrosome migration to initiate primary ciliogenesis. J. Cell Biol. 216, 3713–3728 (2017).
pubmed: 28993469
pmcid: 5674878
doi: 10.1083/jcb.201610039
Garbrecht, J., Laos, T., Holzer, E., Dillinger, M. & Dammermann, A. An acentriolar centrosome at the C. elegans ciliary base. Curr. Biol. 31, 2418–2428.e8 (2021).
pubmed: 33798427
doi: 10.1016/j.cub.2021.03.023
Magescas, J., Eskinazi, S., Tran, M. V. & Feldman, J. L. Centriole-less pericentriolar material serves as a microtubule organizing center at the base of C. elegans sensory cilia. Curr. Biol. 31, 2410–2417 (2021). Together with Garbrecht et al. (2021), this work provides molecular and functional insight into the formation of an acentriolar MTOC located at the ciliary base in worm neurons.
pubmed: 33798428
pmcid: 8277230
doi: 10.1016/j.cub.2021.03.022
Spassky, N. & Meunier, A. The development and functions of multiciliated epithelia. Nat. Rev. Mol. Cell Biol. 18, 423–436 (2017).
pubmed: 28400610
doi: 10.1038/nrm.2017.21
Clare, D. K. et al. Basal foot MTOC organizes pillar MTs required for coordination of beating cilia. Nat. Commun. 5, 4888 (2014).
pubmed: 25215410
doi: 10.1038/ncomms5888
Tateishi, K., Nishida, T., Inoue, K. & Tsukita, S. Three-dimensional organization of layered apical cytoskeletal networks associated with mouse airway tissue development. Sci. Rep. 7, 43783 (2017).
pubmed: 28272499
pmcid: 5363704
doi: 10.1038/srep43783
Mercey, O. et al. Massive centriole production can occur in the absence of deuterosomes in multiciliated cells. Nat. Cell Biol. 21, 1544–1552 (2019).
pubmed: 31792378
pmcid: 6913274
doi: 10.1038/s41556-019-0427-x
Usami, F. M. et al. Intercellular and intracellular cilia orientation is coordinated by CELSR1 and CAMSAP3 in oviduct multi-ciliated cells. J. Cell Sci. 134, jcs257006 (2021).
pubmed: 33468623
doi: 10.1242/jcs.257006
Robinson, A. M. et al. CAMSAP3 facilitates basal body polarity and the formation of the central pair of microtubules in motile cilia. Proc. Natl Acad. Sci. USA 117, 13571–13579 (2020).
pubmed: 32482850
pmcid: 7306751
doi: 10.1073/pnas.1907335117
Rios, R. M. The centrosome–Golgi apparatus nexus. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130462 (2014).
pubmed: 25047616
pmcid: 4113106
doi: 10.1098/rstb.2013.0462
Rivero, S., Cardenas, J., Bornens, M. & Rios, R. M. Microtubule nucleation at the cis-side of the Golgi apparatus requires AKAP450 and GM130. EMBO J. 28, 1016–1028 (2009).
pubmed: 19242490
pmcid: 2683699
doi: 10.1038/emboj.2009.47
Gavilan, M. P. et al. The dual role of the centrosome in organizing the microtubule network in interphase. EMBO Rep. 19, e45942 (2018).
pubmed: 30224411
pmcid: 6216252
doi: 10.15252/embr.201845942
Yang, C. et al. EB1 and EB3 regulate microtubule minus end organization and Golgi morphology. J. Cell Biol. 216, 3179–3198 (2017).
pubmed: 28814570
pmcid: 5626540
doi: 10.1083/jcb.201701024
Efimov, A. et al. Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev. Cell 12, 917–930 (2007). This study convincingly demonstrates that the Golgi apparatus serves as a major MTOC in mammalian cells.
pubmed: 17543864
pmcid: 2705290
doi: 10.1016/j.devcel.2007.04.002
Mukherjee, A., Brooks, P. S., Bernard, F., Guichet, A. & Conduit, P. T. D. Microtubules originate asymmetrically at the somatic Golgi and are guided via Kinesin2 to maintain polarity within neurons. eLife 9, e58943 (2020).
pubmed: 32657758
pmcid: 7394546
doi: 10.7554/eLife.58943
Valenzuela, A., Meservey, L., Nguyen, H. & Fu, M. M. Golgi outposts nucleate microtubules in cells with specialized shapes. Trends Cell Biol. 30, 792–804 (2020).
pubmed: 32863092
doi: 10.1016/j.tcb.2020.07.004
Oddoux, S. et al. Microtubules that form the stationary lattice of muscle fibers are dynamic and nucleated at Golgi elements. J. Cell Biol. 203, 205–213 (2013).
pubmed: 24145165
pmcid: 3812964
doi: 10.1083/jcb.201304063
Gimpel, P. et al. Nesprin-1α-dependent microtubule nucleation from the nuclear envelope via Akap450 is necessary for nuclear positioning in muscle cells. Curr. Biol. 27, 2999–3009 (2017).
pubmed: 28966089
pmcid: 5640514
doi: 10.1016/j.cub.2017.08.031
Yalgin, C. et al. Centrosomin represses dendrite branching by orienting microtubule nucleation. Nat. Neurosci. 18, 1437–1445 (2015).
pubmed: 26322925
doi: 10.1038/nn.4099
Ori-McKenney, K. M., Jan, L. Y. & Jan, Y. N. Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal microtubule nucleation in neurons. Neuron 76, 921–930 (2012).
pubmed: 23217741
pmcid: 3523279
doi: 10.1016/j.neuron.2012.10.008
Yang, S. Z. & Wildonger, J. Golgi outposts locally regulate microtubule orientation in neurons but are not required for the overall polarity of the dendritic cytoskeleton. Genetics 215, 435–447 (2020).
pubmed: 32265236
pmcid: 7268992
doi: 10.1534/genetics.119.302979
Nguyen, M. M. et al. γ-Tubulin controls neuronal microtubule polarity independently of Golgi outposts. Mol. Biol. Cell 25, 2039–2050 (2014).
pubmed: 24807906
pmcid: 4072577
doi: 10.1091/mbc.e13-09-0515
Fu, M. M. et al. The Golgi outpost protein TPPP nucleates microtubules and is critical for myelination. Cell 179, 132–146 (2019).
pubmed: 31522887
pmcid: 7214773
doi: 10.1016/j.cell.2019.08.025
Weiner, A. T. et al. Endosomal Wnt signaling proteins control microtubule nucleation in dendrites. PLoS Biol. 18, e3000647 (2020). This paper shows that Wnt signalling pathway components associated with endosomes participate in organizing microtubules in fly neurons.
pubmed: 32163403
pmcid: 7067398
doi: 10.1371/journal.pbio.3000647
Hehnly, H. & Doxsey, S. Rab11 endosomes contribute to mitotic spindle organization and orientation. Dev. Cell 28, 497–507 (2014).
pubmed: 24561039
pmcid: 4030695
doi: 10.1016/j.devcel.2014.01.014
Krishnan, N. et al. Rab11 endosomes coordinate centrosome number and movement following mitotic exit. biorRxiv https://doi.org/10.1101/2021.08.11.455966 (2021).
doi: 10.1101/2021.08.11.455966
Chen, J. V., Buchwalter, R. A., Kao, L. R. & Megraw, T. L. A splice variant of centrosomin converts mitochondria to microtubule-organizing centers. Curr. Biol. 27, 1928–1940 (2017).
pubmed: 28669756
pmcid: 6147254
doi: 10.1016/j.cub.2017.05.090
Vergarajauregui, S. et al. AKAP6 orchestrates the nuclear envelope microtubule-organizing center by linking Golgi and nucleus via AKAP9. eLife 9, e61669 (2020). This study represents a comprehensive analysis of the MTOC associated with the nuclear envelope in cardiomyocytes.
pubmed: 33295871
pmcid: 7725499
doi: 10.7554/eLife.61669
Harris, T. J. & Peifer, M. aPKC controls microtubule organization to balance adherens junction symmetry and planar polarity during development. Dev. Cell 12, 727–738 (2007).
pubmed: 17488624
pmcid: 1950292
doi: 10.1016/j.devcel.2007.02.011
Feldman, J. L. & Priess, J. R. A role for the centrosome and PAR-3 in the hand-off of MTOC function during epithelial polarization. Curr. Biol. 22, 575–582 (2012).
pubmed: 22425160
pmcid: 3409831
doi: 10.1016/j.cub.2012.02.044
Sanchez, A. D. et al. Proximity labeling reveals non-centrosomal microtubule-organizing center components required for microtubule growth and localization. Curr. Biol. 31, 3586–3600 (2021).
pubmed: 34242576
doi: 10.1016/j.cub.2021.06.021
Castiglioni, V. G. et al. Epidermal PAR-6 and PKC-3 are essential for larval development of C. elegans and organize non-centrosomal microtubules. eLife 9, e62067 (2020).
pubmed: 33300872
pmcid: 7755398
doi: 10.7554/eLife.62067
Toya, M. et al. CAMSAP3 orients the apical-to-basal polarity of microtubule arrays in epithelial cells. Proc. Natl Acad. Sci. USA 113, 332–337 (2016).
pubmed: 26715742
doi: 10.1073/pnas.1520638113
Nashchekin, D., Fernandes, A. R. & St Johnston, D. Patronin/shot cortical foci assemble the noncentrosomal microtubule array that specifies the Drosophila anterior–posterior axis. Dev. Cell 38, 61–72 (2016).
pubmed: 27404359
pmcid: 4943857
doi: 10.1016/j.devcel.2016.06.010
Guerreiro, A. et al. WDR62 localizes katanin at spindle poles to ensure synchronous chromosome segregation. J. Cell Biol. 220, e202007171 (2021).
pubmed: 34137788
pmcid: 8240857
doi: 10.1083/jcb.202007171
Huang, J., Liang, Z., Guan, C., Hua, S. & Jiang, K. WDR62 regulates spindle dynamics as an adaptor protein between TPX2/Aurora A and katanin. J. Cell Biol. 220, e202007167 (2021).
pubmed: 34137789
pmcid: 8240853
doi: 10.1083/jcb.202007167
Petry, S., Groen, A. C., Ishihara, K., Mitchison, T. J. & Vale, R. D. Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2. Cell 152, 768–777 (2013).
pubmed: 23415226
pmcid: 3680348
doi: 10.1016/j.cell.2012.12.044
Sanchez-Huertas, C. et al. Non-centrosomal nucleation mediated by augmin organizes microtubules in post-mitotic neurons and controls axonal microtubule polarity. Nat. Commun. 7, 12187 (2016).
pubmed: 27405868
pmcid: 4947180
doi: 10.1038/ncomms12187
Cunha-Ferreira, I. et al. The HAUS complex is a key regulator of non-centrosomal microtubule organization during neuronal development. Cell Rep. 24, 791–800 (2018). Together with ref. 80, this work demonstrates that branching microtubule nucleation has a role in the formation of microtubule arrays in different neuronal compartments.
pubmed: 30044976
pmcid: 6083040
doi: 10.1016/j.celrep.2018.06.093
Qu, X., Kumar, A., Blockus, H., Waites, C. & Bartolini, F. Activity-dependent nucleation of dynamic microtubules at presynaptic boutons controls neurotransmission. Curr. Biol. 29, 4231–4240 (2019).
pubmed: 31813605
pmcid: 6917861
doi: 10.1016/j.cub.2019.10.049
Zenker, J. et al. A microtubule-organizing center directing intracellular transport in the early mouse embryo. Science 357, 925–928 (2017). This paper shows how the cytokinetic bridge is transformed into an MTOC during early mammalian development.
pubmed: 28860385
doi: 10.1126/science.aam9335
Labat-de-Hoz, L. et al. A model for primary cilium biogenesis by polarized epithelial cells: role of the midbody remnant and associated specialized membranes. Front. Cell Dev. Biol. 8, 622918 (2020).
pubmed: 33585461
doi: 10.3389/fcell.2020.622918
Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).
pubmed: 9442869
doi: 10.1146/annurev.cellbio.13.1.83
Brouhard, G. J. & Rice, L. M. Microtubule dynamics: an interplay of biochemistry and mechanics. Nat. Rev. Mol. Cell Biol. 19, 451–463 (2018).
pubmed: 29674711
pmcid: 6019280
doi: 10.1038/s41580-018-0009-y
Gudimchuk, N. B. & McIntosh, J. R. Regulation of microtubule dynamics, mechanics and function through the growing tip. Nat. Rev. Mol. Cell Biol. 22, 777–795 (2021).
pubmed: 34408299
doi: 10.1038/s41580-021-00399-x
Estevez-Gallego, J. et al. Structural model for differential cap maturation at growing microtubule ends. eLife 9, e50155 (2020).
pubmed: 32151315
pmcid: 7064335
doi: 10.7554/eLife.50155
Manka, S. W. & Moores, C. A. The role of tubulin–tubulin lattice contacts in the mechanism of microtubule dynamic instability. Nat. Struct. Mol. Biol. 25, 607–615 (2018).
pubmed: 29967541
pmcid: 6201834
doi: 10.1038/s41594-018-0087-8
LaFrance, B. J. et al. Structural transitions in the GTP cap visualized by cryo-electron microscopy of catalytically inactive microtubules. Proc. Natl Acad. Sci. USA 119 (2022).
Brouhard, G. J. et al. XMAP215 is a processive microtubule polymerase. Cell 132, 79–88 (2008).
pubmed: 18191222
pmcid: 2311386
doi: 10.1016/j.cell.2007.11.043
Feng, C. et al. Patronin-mediated minus end growth is required for dendritic microtubule polarity. J. Cell Biol. 218, 2309–2328 (2019).
pubmed: 31076454
pmcid: 6605808
doi: 10.1083/jcb.201810155
Akhmanova, A. & Steinmetz, M. O. Control of microtubule organization and dynamics: two ends in the limelight. Nat. Rev. Mol. Cell Biol. 16, 711–726 (2015).
pubmed: 26562752
doi: 10.1038/nrm4084
Bouchet, B. P. et al. Mesenchymal cell invasion requires cooperative regulation of persistent microtubule growth by SLAIN2 and CLASP1. Dev. Cell 39, 708–723 (2016).
pubmed: 27939686
pmcid: 5178967
doi: 10.1016/j.devcel.2016.11.009
Grigoriev, I. et al. STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER. Curr. Biol. 18, 177–182 (2008).
pubmed: 18249114
pmcid: 2600655
doi: 10.1016/j.cub.2007.12.050
van der Vaart, B. et al. CFEOM1-associated kinesin KIF21A is a cortical microtubule growth inhibitor. Dev. Cell 27, 145–160 (2013).
pubmed: 24120883
doi: 10.1016/j.devcel.2013.09.010
Homma, N. et al. Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell 114, 229–239 (2003).
pubmed: 12887924
doi: 10.1016/S0092-8674(03)00522-1
Maor-Nof, M. et al. Axonal pruning is actively regulated by the microtubule-destabilizing protein kinesin superfamily protein 2A. Cell Rep. 3, 971–977 (2013).
pubmed: 23562155
doi: 10.1016/j.celrep.2013.03.005
Jaworski, J. et al. Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron 61, 85–100 (2009).
pubmed: 19146815
doi: 10.1016/j.neuron.2008.11.013
Straube, A. & Merdes, A. EB3 regulates microtubule dynamics at the cell cortex and is required for myoblast elongation and fusion. Curr. Biol. 17, 1318–1325 (2007).
pubmed: 17658256
pmcid: 1971230
doi: 10.1016/j.cub.2007.06.058
Hooikaas, P. J. et al. Kinesin-4 KIF21B limits microtubule growth to allow rapid centrosome polarization in T cells. eLife 9, e62876 (2020). This paper shows that keeping microtubule arrays sparse can be important for rapid microtubule reorganization in immune cells.
pubmed: 33346730
pmcid: 7817182
doi: 10.7554/eLife.62876
Muhia, M. et al. The Kinesin KIF21B regulates microtubule dynamics and is essential for neuronal morphology, synapse function, and learning and memory. Cell Rep. 15, 968–977 (2016).
pubmed: 27117409
pmcid: 5305027
doi: 10.1016/j.celrep.2016.03.086
Bearce, E. A., Erdogan, B. & Lowery, L. A. TIPsy tour guides: how microtubule plus-end tracking proteins (+TIPs) facilitate axon guidance. Front. Cell Neurosci. 9, 241 (2015).
pubmed: 26175669
pmcid: 4485311
doi: 10.3389/fncel.2015.00241
Baas, P. W., Rao, A. N., Matamoros, A. J. & Leo, L. Stability properties of neuronal microtubules. Cytoskeleton 73, 442–460 (2016).
pubmed: 26887570
doi: 10.1002/cm.21286
Cuveillier, C. et al. MAP6 is an intraluminal protein that induces neuronal microtubules to coil. Sci. Adv. 6, eaaz4344 (2020). This study demonstrates that the protein responsible for strong stabilization of neuronal microtubules localizes to microtubule lumen and induces their deformation.
pubmed: 32270043
pmcid: 7112752
doi: 10.1126/sciadv.aaz4344
Bodakuntla, S., Jijumon, A. S., Villablanca, C., Gonzalez-Billault, C. & Janke, C. Microtubule-associated proteins: structuring the cytoskeleton. Trends Cell Biol. 29, 804–819 (2019).
pubmed: 31416684
doi: 10.1016/j.tcb.2019.07.004
Freal, A. et al. Feedback-driven assembly of the axon initial segment. Neuron 104, 305–321 (2019).
pubmed: 31474508
pmcid: 6839619
doi: 10.1016/j.neuron.2019.07.029
Feng, C. et al. Trim9 and Klp61F promote polymerization of new dendritic microtubules along parallel microtubules. J. Cell Sci. 134, jcs258437 (2021).
pubmed: 34096607
pmcid: 8214762
doi: 10.1242/jcs.258437
Janson, M. E., de Dood, M. E. & Dogterom, M. Dynamic instability of microtubules is regulated by force. J. Cell Biol. 161, 1029–1034 (2003).
pubmed: 12821641
pmcid: 2173003
doi: 10.1083/jcb.200301147
Xu, Z. et al. Microtubules acquire resistance from mechanical breakage through intralumenal acetylation. Science 356, 328–332 (2017).
pubmed: 28428427
pmcid: 5457157
doi: 10.1126/science.aai8764
Thery, M. & Blanchoin, L. Microtubule self-repair. Curr. Opin. Cell Biol. 68, 144–154 (2021).
pubmed: 33217636
doi: 10.1016/j.ceb.2020.10.012
Schaedel, L. et al. Microtubules self-repair in response to mechanical stress. Nat. Mater. 14, 1156–1163 (2015).
pubmed: 26343914
pmcid: 4620915
doi: 10.1038/nmat4396
Vemu, A. et al. Severing enzymes amplify microtubule arrays through lattice GTP-tubulin incorporation. Science 361, eaau1504 (2018).
pubmed: 30139843
pmcid: 6510489
doi: 10.1126/science.aau1504
Triclin, S. et al. Self-repair protects microtubules from destruction by molecular motors. Nat. Mater. 20, 883–891 (2021).
pubmed: 33479528
pmcid: 7611741
doi: 10.1038/s41563-020-00905-0
Andreu-Carbo, M., Fernandes, S., Velluz, M. C., Kruse, K. & Aumeier, C. Motor usage imprints microtubule stability along the shaft. Dev. Cell 57, 5–18 (2022).
pubmed: 34883065
doi: 10.1016/j.devcel.2021.11.019
Dimitrov, A. et al. Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues. Science 322, 1353–1356 (2008).
pubmed: 18927356
doi: 10.1126/science.1165401
de Forges, H. et al. Localized mechanical stress promotes microtubule rescue. Curr. Biol. 26, 3399–3406 (2016).
pubmed: 27916523
doi: 10.1016/j.cub.2016.10.048
Shima, T. et al. Kinesin-binding-triggered conformation switching of microtubules contributes to polarized transport. J. Cell Biol. 217, 4164–4183 (2018).
pubmed: 30297389
pmcid: 6279379
doi: 10.1083/jcb.201711178
Peet, D. R., Burroughs, N. J. & Cross, R. A. Kinesin expands and stabilizes the GDP-microtubule lattice. Nat. Nanotechnol. 13, 386–391 (2018). Together with Shima et al. (2018), this work convincingly demonstrates that kinesin 1 can cause expansion of the microtubule lattice.
pubmed: 29531331
pmcid: 5937683
doi: 10.1038/s41565-018-0084-4
He, L. et al. Cortical anchoring of the microtubule cytoskeleton is essential for neuron polarity. eLife 9, e55111 (2020).
pubmed: 32293562
pmcid: 7159925
doi: 10.7554/eLife.55111
Dogterom, M. & Koenderink, G. H. Actin–microtubule crosstalk in cell biology. Nat. Rev. Mol. Cell Biol. 20, 38–54 (2019).
pubmed: 30323238
doi: 10.1038/s41580-018-0067-1
Noordstra, I. & Akhmanova, A. Linking cortical microtubule attachment and exocytosis. F1000Res 6, 469 (2017).
pubmed: 28491287
pmcid: 5399970
doi: 10.12688/f1000research.10729.1
Basu, S. et al. CLASP2-dependent microtubule capture at the neuromuscular junction membrane requires LL5β and actin for focal delivery of acetylcholine receptor vesicles. Mol. Biol. Cell 26, 938–951 (2015).
pubmed: 25589673
pmcid: 4342029
doi: 10.1091/mbc.E14-06-1158
Rahimov, F. & Kunkel, L. M. The cell biology of disease: cellular and molecular mechanisms underlying muscular dystrophy. J. Cell Biol. 201, 499–510 (2013).
pubmed: 23671309
pmcid: 3653356
doi: 10.1083/jcb.201212142
Nelson, D. M. et al. Variable rescue of microtubule and physiological phenotypes in mdx muscle expressing different miniaturized dystrophins. Hum. Mol. Genet. 27, 2090–2100 (2018).
pubmed: 29618008
pmcid: 5985723
doi: 10.1093/hmg/ddy113
Gawor, M. & Proszynski, T. J. The molecular cross talk of the dystrophin–glycoprotein complex. Ann. N. Y. Acad. Sci. 1412, 62–72 (2018).
pubmed: 29068540
doi: 10.1111/nyas.13500
Ayalon, G., Davis, J. Q., Scotland, P. B. & Bennett, V. An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan. Cell 135, 1189–1200 (2008).
pubmed: 19109891
doi: 10.1016/j.cell.2008.10.018
Leterrier, C. et al. End-binding proteins EB3 and EB1 link microtubules to ankyrin G in the axon initial segment. Proc. Natl Acad. Sci. USA 108, 8826–8831 (2011).
pubmed: 21551097
pmcid: 3102358
doi: 10.1073/pnas.1018671108
Shaw, R. M. et al. Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128, 547–560 (2007).
pubmed: 17289573
pmcid: 1955433
doi: 10.1016/j.cell.2006.12.037
Roll-Mecak, A. The tubulin code in microtubule dynamics and information encoding. Dev. Cell 54, 7–20 (2020).
pubmed: 32634400
doi: 10.1016/j.devcel.2020.06.008
Janke, C. & Magiera, M. M. The tubulin code and its role in controlling microtubule properties and functions. Nat. Rev. Mol. Cell Biol. 21, 307–326 (2020).
pubmed: 32107477
doi: 10.1038/s41580-020-0214-3
Katrukha, E. A., Jurriens, D., Salas Pastene, D. M. & Kapitein, L. C. Quantitative mapping of dense microtubule arrays in mammalian neurons. eLife 10, e67925 (2021). This paper uses stimulated emission depletion and expansion microscopy to measure the distribution and relative abundance of different microtubule subsets in dendrites.
pubmed: 34313224
pmcid: 8416025
doi: 10.7554/eLife.67925
Peris, L. et al. Motor-dependent microtubule disassembly driven by tubulin tyrosination. J. Cell Biol. 185, 1159–1166 (2009).
pubmed: 19564401
pmcid: 2712961
doi: 10.1083/jcb.200902142
Valenstein, M. L. & Roll-Mecak, A. Graded control of microtubule severing by tubulin glutamylation. Cell 164, 911–921 (2016).
pubmed: 26875866
pmcid: 6459029
doi: 10.1016/j.cell.2016.01.019
Cai, D., McEwen, D. P., Martens, J. R., Meyhofer, E. & Verhey, K. J. Single molecule imaging reveals differences in microtubule track selection between Kinesin motors. PLoS Biol. 7, e1000216 (2009).
pubmed: 19823565
pmcid: 2749942
doi: 10.1371/journal.pbio.1000216
Guardia, C. M., Farias, G. G., Jia, R., Pu, J. & Bonifacino, J. S. BORC functions upstream of Kinesins 1 and 3 to coordinate regional movement of lysosomes along different microtubule tracks. Cell Rep. 17, 1950–1961 (2016).
pubmed: 27851960
pmcid: 5136296
doi: 10.1016/j.celrep.2016.10.062
Tas, R. P. et al. Differentiation between oppositely oriented microtubules controls polarized neuronal transport. Neuron 96, 1264–1271 (2017). This paper introduces Motor-PAINT and demonstrates that different microtubule subsets have different orientations within dendrites.
pubmed: 29198755
pmcid: 5746200
doi: 10.1016/j.neuron.2017.11.018
Sirajuddin, M., Rice, L. M. & Vale, R. D. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat. Cell Biol. 16, 335–344 (2014).
pubmed: 24633327
pmcid: 4117587
doi: 10.1038/ncb2920
Monroy, B. Y. et al. A combinatorial MAP code dictates polarized microtubule transport. Dev. Cell 53, 60–72 (2020). This paper dissects the effects of an array of neuronal MAPs on the motility of several types of transporting kinesins.
pubmed: 32109385
pmcid: 7181406
doi: 10.1016/j.devcel.2020.01.029
Magiera, M. M., Singh, P., Gadadhar, S. & Janke, C. Tubulin posttranslational modifications and emerging links to human disease. Cell 173, 1323–1327 (2018).
pubmed: 29856952
doi: 10.1016/j.cell.2018.05.018
Magiera, M. M. et al. Excessive tubulin polyglutamylation causes neurodegeneration and perturbs neuronal transport. EMBO J. 37, e100440 (2018).
pubmed: 30420556
pmcid: 6276888
doi: 10.15252/embj.2018100440
Shashi, V. et al. Loss of tubulin deglutamylase CCP1 causes infantile-onset neurodegeneration. EMBO J. 37, e100540 (2018). Together with Magiera et al. (EMBO J, 2018), this work provides one of the best examples of how misregulation of microtubule post-translational modifications can lead to human disease.
pubmed: 30420557
pmcid: 6276871
doi: 10.15252/embj.2018100540
Bodakuntla, S. et al. Tubulin polyglutamylation is a general traffic-control mechanism in hippocampal neurons. J. Cell Sci. 133, jcs241802 (2020).
pubmed: 31932508
doi: 10.1242/jcs.241802
Bodakuntla, S. et al. Distinct roles of α- and β-tubulin polyglutamylation in controlling axonal transport and in neurodegeneration. EMBO J. 40, e108498 (2021).
pubmed: 34309047
doi: 10.15252/embj.2021108498
Gadadhar, S. et al. Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility. Science 371, eabd4914 (2021).
pubmed: 33414192
doi: 10.1126/science.abd4914
Lechler, T. & Mapelli, M. Spindle positioning and its impact on vertebrate tissue architecture and cell fate. Nat. Rev. Mol. Cell Biol. 22, 691–708 (2021).
pubmed: 34158639
doi: 10.1038/s41580-021-00384-4
Jimenez, A. J. et al. Acto-myosin network geometry defines centrosome position. Curr. Biol. 31, 1206–1220 (2021).
pubmed: 33609453
doi: 10.1016/j.cub.2021.01.002
Yi, J. et al. Centrosome repositioning in T cells is biphasic and driven by microtubule end-on capture-shrinkage. J. Cell Biol. 202, 779–792 (2013).
pubmed: 23979719
pmcid: 3760611
doi: 10.1083/jcb.201301004
Zheng, Y. et al. Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nat. Cell Biol. 10, 1172–1180 (2008).
pubmed: 18758451
pmcid: 2588425
doi: 10.1038/ncb1777
del Castillo, U., Winding, M., Lu, W. & Gelfand, V. I. Interplay between kinesin-1 and cortical dynein during axonal outgrowth and microtubule organization in Drosophila neurons. eLife 4, e10140 (2015).
pubmed: 26615019
pmcid: 4739764
doi: 10.7554/eLife.10140
Del Castillo, U., Muller, H. J. & Gelfand, V. I. Kinetochore protein Spindly controls microtubule polarity in Drosophila axons. Proc. Natl Acad. Sci. USA 117, 12155–12163 (2020).
pubmed: 32430325
pmcid: 7275735
doi: 10.1073/pnas.2005394117
Lu, W. & Gelfand, V. I. Moonlighting motors: kinesin, dynein, and cell polarity. Trends Cell Biol. 27, 505–514 (2017).
pubmed: 28284467
pmcid: 5476484
doi: 10.1016/j.tcb.2017.02.005
Palacios, I. M. & St Johnston, D. Kinesin light chain-independent function of the Kinesin heavy chain in cytoplasmic streaming and posterior localisation in the Drosophila oocyte. Development 129, 5473–5485 (2002).
pubmed: 12403717
doi: 10.1242/dev.00119
Lu, W., Fox, P., Lakonishok, M., Davidson, M. W. & Gelfand, V. I. Initial neurite outgrowth in Drosophila neurons is driven by kinesin-powered microtubule sliding. Curr. Biol. 23, 1018–1023 (2013).
pubmed: 23707427
pmcid: 3676710
doi: 10.1016/j.cub.2013.04.050
Mattie, F. J. et al. Directed microtubule growth, +TIPs, and kinesin-2 are required for uniform microtubule polarity in dendrites. Curr. Biol. 20, 2169–2177 (2010).
pubmed: 21145742
pmcid: 3035180
doi: 10.1016/j.cub.2010.11.050
Schatzle, P. et al. Activity-dependent actin remodeling at the base of dendritic spines promotes microtubule entry. Curr. Biol. 28, 2081–2093 (2018).
pubmed: 29910073
doi: 10.1016/j.cub.2018.05.004
Merriam, E. B. et al. Synaptic regulation of microtubule dynamics in dendritic spines by calcium, F-actin, and drebrin. J. Neurosci. 33, 16471–16482 (2013).
pubmed: 24133252
pmcid: 3797370
doi: 10.1523/JNEUROSCI.0661-13.2013
Slater, P. G. et al. XMAP215 promotes microtubule-F-actin interactions to regulate growth cone microtubules during axon guidance in Xenopus laevis. J. Cell Sci. 132, jcs224311 (2019).
pubmed: 30890650
pmcid: 6526707
doi: 10.1242/jcs.224311
Sanchez-Huertas, C. et al. The +TIP Navigator-1 is an actin-microtubule crosslinker that regulates axonal growth cone motility. J. Cell Biol. 219, e201905199 (2020).
pubmed: 32497170
pmcid: 7480110
doi: 10.1083/jcb.201905199
Kundu, T., Dutta, P., Nagar, D., Maiti, S. & Ghose, A. Coupling of dynamic microtubules to F-actin by Fmn2 regulates chemotaxis of neuronal growth cones. J. Cell Sci. 134, jcs252916 (2021).
pubmed: 34313311
doi: 10.1242/jcs.252916
Burute, M. & Kapitein, L. C. Cellular logistics: unraveling the interplay between microtubule organization and intracellular transport. Annu. Rev. Cell Dev. Biol. 35, 29–54 (2019).
pubmed: 31394046
doi: 10.1146/annurev-cellbio-100818-125149
Douanne, T. & Griffiths, G. M. Cytoskeletal control of the secretory immune synapse. Curr. Opin. Cell Biol. 71, 87–94 (2021).
pubmed: 33711784
doi: 10.1016/j.ceb.2021.02.008
Kopf, A. et al. Microtubules control cellular shape and coherence in amoeboid migrating cells. J. Cell Biol. 219, e201907154 (2020). This study provides convincing support for the concept that one of the functions of the microtubule network is to preserve the integrity of highly branched cells during cell migration in complex environments.
pubmed: 32379884
pmcid: 7265309
doi: 10.1083/jcb.201907154
Vertii, A. et al. The centrosome undergoes Plk1-independent interphase maturation during inflammation and mediates cytokine release. Dev. Cell 37, 377–386 (2016).
pubmed: 27219065
doi: 10.1016/j.devcel.2016.04.023
Etienne-Manneville, S. Microtubules in cell migration. Annu. Rev. Cell Dev. Biol. 29, 471–499 (2013).
pubmed: 23875648
doi: 10.1146/annurev-cellbio-101011-155711
Martin, M., Veloso, A., Wu, J., Katrukha, E. A. & Akhmanova, A. Control of endothelial cell polarity and sprouting angiogenesis by non-centrosomal microtubules. eLife 7, e 33864 (2018).
doi: 10.7554/eLife.33864
Pasquier, E., André, N. & Braguer, D. Targeting microtubules to inhibit angiogenesis and disrupt tumour vasculature: implications for cancer treatment. Curr. Cancer Drug Targets 7, 566–581 (2007).
pubmed: 17896922
doi: 10.2174/156800907781662266
Blasky, A. J., Mangan, A. & Prekeris, R. Polarized protein transport and lumen formation during epithelial tissue morphogenesis. Annu. Rev. Cell Dev. Biol. 31, 575–591 (2015).
pubmed: 26359775
pmcid: 4927002
doi: 10.1146/annurev-cellbio-100814-125323
Booth, A. J. R., Blanchard, G. B., Adams, R. J. & Roper, K. A dynamic microtubule cytoskeleton directs medial actomyosin function during tube formation. Dev. Cell 29, 562–576 (2014).
pubmed: 24914560
pmcid: 4064686
doi: 10.1016/j.devcel.2014.03.023
Henderson, D. J., Long, D. A. & Dean, C. H. Planar cell polarity in organ formation. Curr. Opin. Cell Biol. 55, 96–103 (2018).
pubmed: 30015152
doi: 10.1016/j.ceb.2018.06.011
Matis, M., Russler-Germain, D. A., Hu, Q., Tomlin, C. J. & Axelrod, J. D. Microtubules provide directional information for core PCP function. eLife 3, e02893 (2014). This paper combines experiments with modelling to demonstrate the interplay between planar cell polarity signalling and the apical microtubule cytoskeleton.
pubmed: 25124458
pmcid: 4151085
doi: 10.7554/eLife.02893
Shimada, Y., Yonemura, S., Ohkura, H., Strutt, D. & Uemura, T. Polarized transport of Frizzled along the planar microtubule arrays in Drosophila wing epithelium. Dev. Cell 10, 209–222 (2006).
pubmed: 16459300
doi: 10.1016/j.devcel.2005.11.016
Kimura, T., Saito, H., Kawasaki, M. & Takeichi, M. CAMSAP3 is required for mTORC1-dependent ependymal cell growth and lateral ventricle shaping in mouse brains. Development 148, dev195073 (2021).
pubmed: 33462112
doi: 10.1242/dev.195073
Herawati, E. et al. Multiciliated cell basal bodies align in stereotypical patterns coordinated by the apical cytoskeleton. J. Cell Biol. 214, 571–586 (2016).
pubmed: 27573463
pmcid: 5004441
doi: 10.1083/jcb.201601023
Oddoux, S. et al. Misplaced Golgi elements produce randomly oriented microtubules and aberrant cortical arrays of microtubules in dystrophic skeletal muscle fibers. Front. Cell Dev. Biol. 7, 176 (2019).
pubmed: 31620435
pmcid: 6759837
doi: 10.3389/fcell.2019.00176
Robison, P. et al. Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes. Science 352, aaf0659 (2016). This paper demonstrates that specific interactions between microtubules and intermediate filaments contribute to the mechanics of heart cell contraction.
pubmed: 27102488
pmcid: 5441927
doi: 10.1126/science.aaf0659
Salomon, A. K. et al. Desmin intermediate filaments and tubulin detyrosination stabilize growing microtubules in the cardiomyocyte. Preprint at bioRxiv https://doi.org/10.1101/2021.05.26.445641 (2021).
doi: 10.1101/2021.05.26.445641
Yu, X. et al. MARK4 controls ischaemic heart failure through microtubule detyrosination. Nature 594, 560–565 (2021).
pubmed: 34040253
pmcid: 7612144
doi: 10.1038/s41586-021-03573-5
Zile, M. R. et al. Cardiocyte cytoskeleton in patients with left ventricular pressure overload hypertrophy. J. Am. Coll. Cardiol. 37, 1080–1084 (2001).
pubmed: 11263612
doi: 10.1016/S0735-1097(00)01207-9
Chen, C. Y. et al. Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure. Nat. Med. 24, 1225–1233 (2018).
pubmed: 29892068
doi: 10.1038/s41591-018-0046-2
Aiken, J. & Holzbaur, E. L. F. Cytoskeletal regulation guides neuronal trafficking to effectively supply the synapse. Curr. Biol. 31, R633–R650 (2021).
pubmed: 34033795
pmcid: 8360495
doi: 10.1016/j.cub.2021.02.024
Koppers, M. & Farias, G. G. Organelle distribution in neurons: logistics behind polarized transport. Curr. Opin. Cell Biol. 71, 46–54 (2021).
pubmed: 33706233
doi: 10.1016/j.ceb.2021.02.004
Baas, P. W. Microtubules and neuronal polarity: lessons from mitosis. Neuron 22, 23–31 (1999).
pubmed: 10027286
doi: 10.1016/S0896-6273(00)80675-3
Hertzler, J. I. et al. Kinetochore proteins suppress neuronal microtubule dynamics and promote dendrite regeneration. Mol. Biol. Cell 31, 2125–2138 (2020).
pubmed: 32673176
pmcid: 7530905
doi: 10.1091/mbc.E20-04-0237-T
Cheerambathur, D. K. et al. The kinetochore–microtubule coupling machinery is repurposed in sensory nervous system morphogenesis. Dev. Cell 48, 864–872 (2019).
pubmed: 30827898
pmcid: 6436928
doi: 10.1016/j.devcel.2019.02.002
Zhao, G., Oztan, A., Ye, Y. & Schwarz, T. L. Kinetochore proteins have a post-mitotic function in neurodevelopment. Dev. Cell 48, 873–882 (2019).
pubmed: 30827899
pmcid: 7375515
doi: 10.1016/j.devcel.2019.02.003
Guedes-Dias, P. & Holzbaur, E. L. F. Axonal transport: driving synaptic function. Science 366, eaaw9997 (2019).
pubmed: 31601744
pmcid: 6996143
doi: 10.1126/science.aaw9997
Yogev, S., Cooper, R., Fetter, R., Horowitz, M. & Shen, K. Microtubule organization determines axonal transport dynamics. Neuron 92, 449–460 (2016). This paper carefully analyses the number and length of microtubules in worm axons and shows that cargoes frequently pause at microtubule ends.
pubmed: 27764672
pmcid: 5432135
doi: 10.1016/j.neuron.2016.09.036
Guedes-Dias, P. et al. Kinesin-3 responds to local microtubule dynamics to target synaptic cargo delivery to the presynapse. Curr. Biol. 29, 268–282 (2019).
pubmed: 30612907
pmcid: 6342647
doi: 10.1016/j.cub.2018.11.065
Nirschl, J. J., Magiera, M. M., Lazarus, J. E., Janke, C. & Holzbaur, E. L. α-Tubulin tyrosination and CLIP-170 phosphorylation regulate the initiation of dynein-driven transport in neurons. Cell Rep. 14, 2637–2652 (2016).
pubmed: 26972003
pmcid: 4819336
doi: 10.1016/j.celrep.2016.02.046
Moughamian, A. J., Osborn, G. E., Lazarus, J. E., Maday, S. & Holzbaur, E. L. Ordered recruitment of dynactin to the microtubule plus-end is required for efficient initiation of retrograde axonal transport. J. Neurosci. 33, 13190–13203 (2013).
pubmed: 23926272
pmcid: 3735891
doi: 10.1523/JNEUROSCI.0935-13.2013
Stone, M. C., Roegiers, F. & Rolls, M. M. Microtubules have opposite orientation in axons and dendrites of Drosophila neurons. Mol. Biol. Cell 19, 4122–4129 (2008).
pubmed: 18667536
pmcid: 2555934
doi: 10.1091/mbc.e07-10-1079
Goodwin, P. R., Sasaki, J. M. & Juo, P. Cyclin-dependent kinase 5 regulates the polarized trafficking of neuropeptide-containing dense-core vesicles in Caenorhabditis elegans motor neurons. J. Neurosci. 32, 8158–8172 (2012).
pubmed: 22699897
pmcid: 3392131
doi: 10.1523/JNEUROSCI.0251-12.2012
Harterink, M. et al. Light-controlled intracellular transport in Caenorhabditis elegans. Curr. Biol. 26, R153–R154 (2016).
pubmed: 26906482
doi: 10.1016/j.cub.2015.12.016
Baas, P. W., Deitch, J. S., Black, M. M. & Banker, G. A. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl Acad. Sci. USA 85, 8335–8339 (1988). This paper demonstrates that the microtubule array in dendrites from cultured neurons has mixed polarity.
pubmed: 3054884
pmcid: 282424
doi: 10.1073/pnas.85.21.8335
Yau, K. W. et al. Dendrites in vitro and in vivo contain microtubules of opposite polarity and axon formation correlates with uniform plus-end-out microtubule orientation. J. Neurosci. 36, 1071–1085 (2016). This paper demonstrates mixed polarity of the microtubule arrays in dendrites in brain tissue and uses laser-based microsurgery to quantify them.
pubmed: 26818498
pmcid: 4728718
doi: 10.1523/JNEUROSCI.2430-15.2016
Ayloo, S., Guedes-Dias, P., Ghiretti, A. E. & Holzbaur, E. L. F. Dynein efficiently navigates the dendritic cytoskeleton to drive the retrograde trafficking of BDNF/TrkB signaling endosomes. Mol. Biol. Cell 28, 2543–2554 (2017).
pubmed: 28720664
pmcid: 5597326
doi: 10.1091/mbc.e17-01-0068
Kapitein, L. C. et al. Mixed microtubules steer dynein-driven cargo transport into dendrites. Curr. Biol. 20, 290–299 (2010).
pubmed: 20137950
doi: 10.1016/j.cub.2009.12.052
van Beuningen, S. F. B. et al. TRIM46 controls neuronal polarity and axon specification by driving the formation of parallel microtubule arrays. Neuron 88, 1208–1226 (2015).
pubmed: 26671463
doi: 10.1016/j.neuron.2015.11.012
Rao, A. N. et al. Cytoplasmic dynein transports axonal microtubules in a polarity-sorting manner. Cell Rep. 19, 2210–2219 (2017).
pubmed: 28614709
pmcid: 5523108
doi: 10.1016/j.celrep.2017.05.064
Muralidharan, H. & Baas, P. W. Mitotic motor KIFC1 is an organizer of microtubules in the axon. J. Neurosci. 39, 3792–3811 (2019).
pubmed: 30804089
pmcid: 6520510
doi: 10.1523/JNEUROSCI.3099-18.2019
Yau, K. W. et al. Microtubule minus-end binding protein CAMSAP2 controls axon specification and dendrite development. Neuron 82, 1058–1073 (2014).
pubmed: 24908486
doi: 10.1016/j.neuron.2014.04.019
Cao, Y. et al. Microtubule minus-end binding protein CAMSAP2 and Kinesin-14 motor KIFC3 control dendritic microtubule organization. Curr. Biol. 30, 899–908 (2020).
pubmed: 32084403
pmcid: 7063570
doi: 10.1016/j.cub.2019.12.056
Boiarska, Z. & Passarella, D. Microtubule-targeting agents and neurodegeneration. Drug Discov. Today 26, 604–615 (2021).
pubmed: 33279455
doi: 10.1016/j.drudis.2020.11.033
Consolati, T. et al. Microtubule nucleation properties of single human γTuRCs explained by their cryo-EM structure. Dev. Cell 53, 603–617 (2020).
pubmed: 32433913
pmcid: 7280788
doi: 10.1016/j.devcel.2020.04.019
Liu, P. et al. Insights into the assembly and activation of the microtubule nucleator γ-TuRC. Nature 578, 467–471 (2020).
pubmed: 31856152
doi: 10.1038/s41586-019-1896-6
Wieczorek, M. et al. Asymmetric molecular architecture of the human γ-tubulin ring complex. Cell 180, 165–175 (2020).
pubmed: 31862189
doi: 10.1016/j.cell.2019.12.007
Kuo, Y. W., Trottier, O., Mahamdeh, M. & Howard, J. Spastin is a dual-function enzyme that severs microtubules and promotes their regrowth to increase the number and mass of microtubules. Proc. Natl Acad. Sci. USA 116, 5533–5541 (2019).
pubmed: 30837315
pmcid: 6431158
doi: 10.1073/pnas.1818824116
Kuo, Y. W. & Howard, J. Cutting, amplifying, and aligning microtubules with severing enzymes. Trends Cell Biol. 31, 50–61 (2021).
pubmed: 33183955
doi: 10.1016/j.tcb.2020.10.004
Jiang, K. et al. Microtubule minus-end regulation at spindle poles by an ASPM–katanin complex. Nat. Cell Biol. 19, 480–492 (2017).
pubmed: 28436967
pmcid: 5458804
doi: 10.1038/ncb3511
Chakraborty, S., Mahamid, J. & Baumeister, W. Cryoelectron tomography reveals nanoscale organization of the cytoskeleton and its relation to microtubule curvature inside cells. Structure 28, 991–1003 (2020).
pubmed: 32579947
doi: 10.1016/j.str.2020.05.013
Muller, A. et al. 3D FIB-SEM reconstruction of microtubule–organelle interaction in whole primary mouse β cells. J. Cell Biol. 220, e202010039 (2021). This study uses electron microscopy to visualize the complete microtubule cytoskeleton and membrane organelles in entire β cells.
pubmed: 33326005
doi: 10.1083/jcb.202010039
Liu, S., Hoess, P. & Ries, J. Super-resolution microscopy for structural cell biology. Annu. Rev. Biophys. 51, https://doi.org/10.1146/annurev-biophys-102521-112912 (2022).
Chen, F., Tillberg, P. W. & Boyden, E. S. Optical imaging. Expansion microscopy. Science 347, 543–548 (2015).
pubmed: 25592419
pmcid: 4312537
doi: 10.1126/science.1260088
Gros, O. J., Damstra, H. G. J., Kapitein, L. C., Akhmanova, A. & Berger, F. Dynein self-organizes while translocating the centrosome in T-cells. Mol. Biol. Cell 32, 855–868 (2021).
pubmed: 33689395
pmcid: 8108531
doi: 10.1091/mbc.E20-10-0668
Damstra, H. G. J. et al. Visualizing cellular and tissue ultrastructure using ten-fold robust expansion microscopy (TREx). eLife 11, e73775 (2022).
pubmed: 35179128
pmcid: 8887890
doi: 10.7554/eLife.73775