Hemisynapse Formation Between Target Astrocytes and Cortical Neuron Axons
LRRTM2
hemisynapse
synapse formation
synaptogenic protein
target astrocytes
Journal
Frontiers in molecular neuroscience
ISSN: 1662-5099
Titre abrégé: Front Mol Neurosci
Pays: Switzerland
ID NLM: 101477914
Informations de publication
Date de publication:
2022
2022
Historique:
received:
05
12
2021
accepted:
08
02
2022
entrez:
7
4
2022
pubmed:
8
4
2022
medline:
8
4
2022
Statut:
epublish
Résumé
One of the most fundamental organizing principles in the mammalian brain is that neurons do not establish synapses with the other major cell type, the astrocytes. However, induced synapse formation between neurons and astrocytes appears conceivable, because astrocytes are well known to express functional ionotropic glutamate receptors. Here, we attempted to trigger synapse formation between co-cultured neurons and astrocytes by overexpressing the strongly synaptogenic adhesion protein LRRTM2 in astrocytes physically contacted by cortical axons. Interestingly, control experiments with immature cortical astrocytes without any overexpression resulted in the induction of synaptic vesicle clustering in contacting axons (hemisynapse formation). This synaptogenic activity correlated with the endogenous expression of the synaptogenic protein Neuroligin1. Hemisynapse formation was further enhanced upon overexpression of LRRTM2 in cortical astrocytes. In contrast, cerebellar astrocytes required overexpression of LRRTM2 for induction of synaptic vesicle clustering in contacting axons. We further addressed, whether hemisynapse formation was accompanied by the appearance of fully functional glutamatergic synapses. We therefore attempted to record AMPA receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) in innervated astrocytes using the whole-cell patch-clamp technique. Despite the endogenous expression of the AMPA receptor subunits GluA2 and to a lesser extent GluA1, we did not reliably observe spontaneous AMPA mEPSCs. In conclusion, overexpression of the synaptogenic protein LRRTM2 induced hemisynapse formation between co-cultured neurons and astrocytes. However, the formation of fully functional synapses appeared to require additional factors critical for nano-alignment of presynaptic vesicles and postsynaptic receptors.
Identifiants
pubmed: 35386271
doi: 10.3389/fnmol.2022.829506
pmc: PMC8978633
doi:
Types de publication
Journal Article
Langues
eng
Pagination
829506Informations de copyright
Copyright © 2022 Teng and Gottmann.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13564-9
pubmed: 19628693
J Cell Biol. 2021 Jul 5;220(7):
pubmed: 34086051
J Neurosci. 1995 Jun;15(6):4328-42
pubmed: 7540672
Neuron. 2013 Aug 7;79(3):439-46
pubmed: 23931994
J Cell Biol. 1992 May;117(4):849-61
pubmed: 1577861
Mol Neurobiol. 1991 Spring;5(1):31-43
pubmed: 1687351
J Anat. 2011 Jul;219(1):2-7
pubmed: 21395579
Cell. 2020 Apr 30;181(3):536-556
pubmed: 32359437
Curr Opin Neurobiol. 2011 Feb;21(1):132-43
pubmed: 20832286
Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):11116-21
pubmed: 20534458
Science. 2002 Aug 30;297(5586):1525-31
pubmed: 12202822
Annu Rev Neurosci. 2010;33:473-507
pubmed: 20367446
Curr Opin Neurobiol. 2020 Aug;63:137-145
pubmed: 32416471
J Neurosci. 2014 Sep 3;34(36):11929-47
pubmed: 25186741
Cell. 2017 Nov 2;171(4):745-769
pubmed: 29100073
J Neurosci. 2010 Jun 2;30(22):7495-506
pubmed: 20519524
Neuron. 2009 Dec 24;64(6):799-806
pubmed: 20064388
Nat Rev Neurosci. 2007 Aug;8(8):597-609
pubmed: 17637801
Elife. 2018 Jul 25;7:
pubmed: 30044218
Neuron. 2009 Dec 24;64(6):791-8
pubmed: 20064387
J Neurosci. 1996 Jan;16(1):200-9
pubmed: 8613786
Glia. 1988;1(5):328-36
pubmed: 2906630
Nature. 2019 Sep;573(7775):532-538
pubmed: 31534219
J Neurosci Res. 1993 Oct 15;36(3):344-56
pubmed: 8271313
Nature. 2017 Nov 8;551(7679):192-197
pubmed: 29120426
Cell. 2004 Dec 29;119(7):1013-26
pubmed: 15620359
Curr Opin Neurobiol. 2012 Jun;22(3):453-60
pubmed: 22051694
Curr Opin Neurobiol. 2007 Feb;17(1):43-52
pubmed: 17275284
Trends Neurosci. 2006 Jan;29(1):8-20
pubmed: 16337695
Pharmacol Rev. 2010 Sep;62(3):405-96
pubmed: 20716669
Cell Death Dis. 2015 Apr 02;6:e1709
pubmed: 25837485
Brain Res Rev. 2010 May;63(1-2):130-7
pubmed: 20018210
Proc Natl Acad Sci U S A. 2018 Jun 5;115(23):E5382-E5389
pubmed: 29784826
J Neurosci. 1997 Apr 15;17(8):2766-74
pubmed: 9092598
Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):4057-62
pubmed: 23345436
J Physiol. 2021 May;599(10):2639-2653
pubmed: 32749711
J Neurosci. 2005 Jan 5;25(1):260-70
pubmed: 15634790
Trends Neurosci. 2013 Sep;36(9):522-34
pubmed: 23835198
J Neurophysiol. 2003 Dec;90(6):3950-7
pubmed: 12930820
Int J Mol Sci. 2019 May 17;20(10):
pubmed: 31108947
Trends Neurosci. 2014 Oct;37(10):539-50
pubmed: 25131359
Nature. 2019 Sep;573(7775):539-545
pubmed: 31534222
Science. 1992 Jun 12;256(5063):1566-70
pubmed: 1317970
Nat Rev Neurosci. 2021 Mar;22(3):137-151
pubmed: 33420412
Nature. 2008 Oct 16;455(7215):903-11
pubmed: 18923512
Nature. 2016 Aug 11;536(7615):210-4
pubmed: 27462810
Cell. 2000 Jun 9;101(6):657-69
pubmed: 10892652
Trends Neurosci. 2020 Mar;43(3):182-196
pubmed: 32101710
Glia. 1994 Jun;11(2):94-101
pubmed: 7927651
Sci Rep. 2017 Jan 20;7:40865
pubmed: 28106089
J Neurosci Res. 1989 Mar;22(3):274-82
pubmed: 2540340
Neuron. 2017 Nov 1;96(3):680-696
pubmed: 29096080
Nat Neurosci. 2009 Apr;12(4):428-37
pubmed: 19252495
Neuron. 2009 Mar 12;61(5):734-49
pubmed: 19285470
J Neurosci. 1999 Nov 15;19(22):10004-13
pubmed: 10559408
Science. 2005 Feb 25;307(5713):1324-8
pubmed: 15681343
Front Mol Neurosci. 2019 Nov 08;12:269
pubmed: 31780894
Neuron. 2018 Oct 24;100(2):276-293
pubmed: 30359597