UV absorption by silicate cloud precursors in ultra-hot Jupiter WASP-178b.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
04 2022
04 2022
Historique:
received:
20
09
2021
accepted:
24
01
2022
entrez:
7
4
2022
pubmed:
8
4
2022
medline:
19
4
2022
Statut:
ppublish
Résumé
Aerosols have been found to be nearly ubiquitous in substellar atmospheres
Identifiants
pubmed: 35388193
doi: 10.1038/s41586-022-04453-2
pii: 10.1038/s41586-022-04453-2
doi:
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
49-52Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Cushing, M. C. et al. A Spitzer infrared spectrograph spectral sequence of M, L, and T dwarfs. Astrophys. J. 648, 614–628 (2006).
doi: 10.1086/505637
Saumon, D. & Marley, M. S. The evolution of L and T dwarfs in color-magnitude diagrams. Astrophys. J. 689, 1327–1344 (2008).
doi: 10.1086/592734
Burningham, B. et al. Cloud busting: enstatite and quartz clouds in the atmosphere of 2M2224-0158. Mon. Not. R. Astron. Soc. 506, 1944–1961 (2021).
Gao, P. et al. Aerosol composition of hot giant exoplanets dominated by silicates and hydrocarbon hazes. Nature Astron. 4, 951–956 (2020).
doi: 10.1038/s41550-020-1114-3
Lothringer, J. D. et al. An HST/STIS optical transmission spectrum of warm Neptune GJ 436b. Astron. J. 155, 66 (2018).
doi: 10.3847/1538-3881/aaa008
Kitzmann, D. et al. The peculiar atmospheric chemistry of KELT-9b. Astrophys. J. 863, 183 (2018).
doi: 10.3847/1538-4357/aace5a
Hellier, C. et al. WASP-South hot Jupiters: WASP-178b, WASP-184b, WASP-185b, and WASP-192b. Mon. Not. R. Astron. Soc. 490, 1479–1487 (2019).
doi: 10.1093/mnras/stz2713
Rodr´ıguez Mart´ınez, R. et al. KELT-25 b and KELT-26 b: a hot Jupiter and a substellar companion transiting young a stars observed by TESS. Astron. J 160, 111 (2020).
doi: 10.3847/1538-3881/ab9f2d
Matsushima, S. Radiative opacity in stellar atmospheres. II. Effect of ultraviolet continuum on the photospheric radiation field. Astrophys. J. 154, 715 (1968).
doi: 10.1086/149791
Fontenla, J. M., Stancil, P. C. & Landi, E. Solar spectral irradiance, solar activity, and the near- ultra-violet. Astrophys. J. 809, 157 (2015).
doi: 10.1088/0004-637X/809/2/157
Sharp, C. M. & Burrows, A. Atomic and molecular opacities for brown dwarf and giant planet atmospheres. Astrophys. J. Supp. 168, 140–166 (2007).
doi: 10.1086/508708
Lothringer, J. D., Fu, G., Sing, D. K. & Barman, T. S. UV exoplanet transmission spectral features as probes of metals and rainout. Astrophys. J. Lett. 898, L14 (2020).
doi: 10.3847/2041-8213/aba265
Hoeijmakers, H. J. et al. Hot exoplanet atmospheres resolved with transit spectroscopy (HEARTS). IV. A spectral inventory of atoms and molecules in the high-resolution transmission spectrum of WASP- 121 b. Astron. Astrophys. 641, A123 (2020).
doi: 10.1051/0004-6361/202038365
Stangret, M. et al. Detection of Fe I and Fe II in the atmosphere of MASCARA-2b using a cross- correlation method. Astron. Astrophys. 638, A26 (2020).
doi: 10.1051/0004-6361/202037541
Ehrenreich, D. et al. Nightside condensation of iron in an ultrahot giant exoplanet. Nature 580, 597–601 (2020).
pubmed: 32161364
pmcid: 7212060
doi: 10.1038/s41586-020-2107-1
Kesseli, A. Y. & Snellen, I. A. G. Confirmation of asymmetric iron absorption in WASP-76b with HARPS. Astrophys. J. Lett. 908, L17 (2021).
doi: 10.3847/2041-8213/abe047
Sing, D. K. et al. The Hubble Space Telescope PanCET program: exospheric Mg II and Fe II in the near-ultraviolet transmission spectrum of WASP-121b using jitter decorrelation. Astron. J. 158, 91 (2019).
doi: 10.3847/1538-3881/ab2986
Gibson, N. P. et al. Detection of Fe I in the atmosphere of the ultra-hot Jupiter WASP-121b, and a new likelihood-based approach for Doppler-resolved spectroscopy. Mon. Not. R. Astron. Soc. 493, 2215–2228 (2020).
doi: 10.1093/mnras/staa228
Cabot, S. H. C., Madhusudhan, N., Welbanks, L., Piette, A. & Gandhi, S. Detection of neutral atomic species in the ultra-hot Jupiter WASP-121b. Mon. Not. R. Astron. Soc. 494, 363–377 (2020).
doi: 10.1093/mnras/staa748
Hoeijmakers, H. J. et al. A spectral survey of an ultra-hot Jupiter. Detection of metals in the transmission spectrum of KELT-9 b. Astron. Astrophys. 627, A165 (2019).
doi: 10.1051/0004-6361/201935089
Merritt, S. R. et al. An inventory of atomic species in the atmosphere of WASP-121b using UVES high-resolution spectroscopy. Mon. Not. R. Astron. Soc. 506, 3853–3871 (2021).
Wakeford, H. R. et al. Into the UV: a precise transmission spectrum of HAT-P-41b using Hubble’s WFC3/UVIS G280 grism. Astron. J. 159, 204 (2020).
doi: 10.3847/1538-3881/ab7b78
Visscher, C., Lodders, K. & Fegley, J. B. Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. III. Iron, magnesium, and silicon. Astrophys. J. 716, 1060–1075 (2010).
doi: 10.1088/0004-637X/716/2/1060
Parmentier, V., Showman, A. P. & Fortney, J. J. The cloudy shape of hot Jupiter thermal phase curves. Mon. Not. R. Astron. Soc. 501, 78–108 (2021).
doi: 10.1093/mnras/staa3418
Roman, M. T. et al. Clouds in three-dimensional models of hot Jupiters over a wide range of temperatures. I. Thermal structures and broadband phase-curve predictions. Astrophys. J. 908, 101 (2021).
doi: 10.3847/1538-4357/abd549
Helling, C. et al. Cloud property trends in hot and ultra-hot giant gas planets (WASP-43b, WASP-103b, WASP-121b, HAT-P-7b, and WASP-18b). Astron. Astrophys. 649, A44 (2021).
doi: 10.1051/0004-6361/202039911
Thorngren, D., Gao, P. & Fortney, J. J. The intrinsic temperature and radiative–convective boundary depth in the atmospheres of hot Jupiters. Astrophys. J. Lett. 884, L6 (2019).
doi: 10.3847/2041-8213/ab43d0
Hörst, S. M. et al. Haze production rates in super-Earth and mini-Neptune atmosphere experiments. Nature Astron. 2, 303–306 (2018).
doi: 10.1038/s41550-018-0397-0
Fleury, B., Gudipati, M. S., Henderson, B. L. & Swain, M. Photochemistry in hot H
doi: 10.3847/1538-4357/aaf79f
Kempton, E. M. R. et al. A framework for prioritizing the TESS planetary candidates most amenable to atmospheric characterization. Publ. Astron. Soc. Pac. 130, 114401 (2018).
doi: 10.1088/1538-3873/aadf6f
Mullally, S. E., Rodriguez, D. R., Stevenson, K. B. & Wakeford, H. R. The Exo.MAST table for JWST exoplanet atmosphere observability. Res. Notes AAS 3, 193 (2019).
doi: 10.3847/2515-5172/ab62a1
Luna, J. L. & Morley, C. V. Empirically determining substellar cloud compositions in the era of the James Webb Space Telescope. Astrophys. J. 920, 146 (2021).
doi: 10.3847/1538-4357/ac1865
Evans, T. M. et al. An optical transmission spectrum for the ultra-hot Jupiter WASP-121b measured with the Hubble Space Telescope. Astron. J. 156, 283 (2018).
doi: 10.3847/1538-3881/aaebff
Sing, D. K. et al. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 529, 59–62 (2016).
pubmed: 26675732
doi: 10.1038/nature16068
van Dokkum, P. G. Cosmic-ray rejection by Laplacian edge detection. Publ. Astron. Soc. Pac. 113, 1420–1427 (2001).
doi: 10.1086/323894
Pirzkal, N., Hilbert, B. & Rothberg, B. Trace and Wavelength Calibrations of the UVIS G280 +1/−1 Grism Orders Space Telescope WFC Instrument Science Report (Space Telescope Science Institute, 2017).
Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. Lett. 580, L171–L175 (2002).
doi: 10.1086/345520
Pont, F., Zucker, S. & Queloz, D. The effect of red noise on planetary transit detection. Mon. Not. R. Astron. Soc. 373, 231–242 (2006).
doi: 10.1111/j.1365-2966.2006.11012.x
Winn, J. N. et al. The Transit Light Curve Project. VII. The not-so-bloated exoplanet HAT-P-1b. Astron. J. 134, 1707–1712 (2007).
doi: 10.1086/521599
Hauschildt, P. H., Allard, F. & Baron, E. The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K. Astrophys. J. 512, 377–385 (1999).
doi: 10.1086/306745
Sing, D. K. Stellar limb-darkening coefficients for CoRot and Kepler. Astron. Astrophys. 510, A21 (2010).
doi: 10.1051/0004-6361/200913675
Schaller, G., Schaerer, D., Meynet, G. & Maeder, A. New grids of stellar models from 0.8 to 120 M solar at Z=0.020 and Z=0.001. Astron. Astrophys. Suppl. Ser. 96, 269 (1992).
Barman, T. S., Hauschildt, P. H. & Allard, F. Irradiated planets. Astrophys. J. 556, 885–895 (2001).
doi: 10.1086/321610
Lothringer, J. D., Barman, T. & Koskinen, T. Extremely irradiated hot Jupiters: non-oxide inversions, H
doi: 10.3847/1538-4357/aadd9e
Lothringer, J. D. & Barman, T. The influence of host star spectral type on ultra-hot Jupiter atmo- spheres. Astrophys. J. 876, 69 (2019).
doi: 10.3847/1538-4357/ab1485
Hubeny, I., Burrows, A. & Sudarsky, D. A possible bifurcation in atmospheres of strongly irradiated stars and planets. Astrophys. J. 594, 1011–1018 (2003).
doi: 10.1086/377080
Fortney, J. J., Lodders, K., Marley, M. S. & Freedman, R. S. A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. Astrophys. J. 678, 1419–1435 (2008).
doi: 10.1086/528370
Diamond-Lowe, H., Stevenson, K. B., Bean, J. L., Line, M. R. & Fortney, J. J. New analysis indicates no thermal inversion in the atmosphere of HD 209458b. Astrophys. J. 796, 66 (2014).
doi: 10.1088/0004-637X/796/1/66
Lewis, N. K. et al. Into the UV: the atmosphere of the hot Jupiter HAT-P-41b revealed. Astrophys. J. Lett. 902, L19 (2020).
doi: 10.3847/2041-8213/abb77f
Lothringer, J. D. & Barman, T. S. The PHOENIX exoplanet retrieval algorithm and using H
doi: 10.3847/1538-3881/ab8d33
ter Braak, C. J. F. & Vrugt, J. A. Differential evolution markov chain with snooker updater and fewer chains. Stat. Comput. 18, 435–446 (2008).
doi: 10.1007/s11222-008-9104-9
Lothringer, J. D. et al. A new window into planet formation and migration: refractory-to-volatile elemental ratios in ultra-hot Jupiters. Astrophys. J. 914, 12 (2021).
doi: 10.3847/1538-4357/abf8a9
Wilson, J. et al. Gemini/GMOS optical transmission spectroscopy of WASP-121b: signs of variability in an ultra-hot Jupiter? Mon. Not. R. Astron. Soc. 503, 4787–4801 (2021).
Parmentier, V. & Guillot, T. A non-grey analytical model for irradiated atmospheres. I. Derivation. Astron. Astrophys. 562, A133 (2014).
doi: 10.1051/0004-6361/201322342
Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. AStat. Sci. 7, 457–511 (1992).
doi: 10.1214/ss/1177011136
MacDonald, R. J. & Madhusudhan, N. HD 209458b in new light: detection of nitrogen chemistry, patchy clouds and sub-solar water. Mon. Not. R. Astron. Soc. 469, 1979–1996 (2017).
doi: 10.1093/mnras/stx804
McCullough, P. R., Crouzet, N., Deming, D. & Madhusudhan, N. water vapor in the spectrum of the extrasolar planet HD 189733b. I. The transit. Astrophys. J. 791, 55 (2014).
doi: 10.1088/0004-637X/791/1/55
Rackham, B. V., Apai, D. & Giampapa, M. S. The transit light source effect: false spectral features and incorrect densities for M-dwarf transiting planets. Astrophys. J. 853, 122 (2018).
doi: 10.3847/1538-4357/aaa08c
Rackham, B. V., Apai, D. & Giampapa, M. S. The transit light source effect. II. The impact of stellar heterogeneity on transmission spectra of planets orbiting broadly Sun-like stars. Astron. J. 157, 96 (2019).
doi: 10.3847/1538-3881/aaf892
Kirk, J. et al. ACCESS and LRG-BEASTS: a precise new optical transmission spectrum of the ultrahot Jupiter WASP-103b. Astron. J. 162, 34 (2021).
doi: 10.3847/1538-3881/abfcd2
Kochanek, C. S. et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0. Publ. Astron. Soc. Pac. 129, 104502 (2017).
doi: 10.1088/1538-3873/aa80d9
Jayasinghe, T. et al. The ASAS-SN catalogue of variable stars – II. Uniform classification of 412 000 known variables. Mon. Not. R. Astron. Soc. 486, 1907–1943 (2019).
Lecavelier Des Etangs, A., Pont, F., Vidal-Madjar, A. & Sing, D. Rayleigh scattering in the transit spectrum of HD 189733b. Astron. Astrophys. 481, L83–L86 (2008).
doi: 10.1051/0004-6361:200809388
Ohno, K. & Kawashima, Y. Super-Rayleigh slopes in transmission spectra of exoplanets generated by photochemical haze. Astrophys. J. Lett. 895, L47 (2020).
doi: 10.3847/2041-8213/ab93d7
Powell, D. et al. Transit signatures of inhomogeneous clouds on hot Jupiters: insights from micro- physical cloud modeling. Astrophys. J. 887, 170 (2019).
doi: 10.3847/1538-4357/ab55d9
Espinoza, N. & Jones, K. Constraining mornings and evenings on distant worlds: a new semianalytical approach and prospects with transmission spectroscopy. Astron. J. 162, 165 (2021).
doi: 10.3847/1538-3881/ac134d
Mikal-Evans, T. et al. Diurnal variations in the stratosphere of an ultrahot planet. Nat. Astron. https://doi.org/10.1038/s41550-021-01592-w (2021).
Showman, A. P., Fortney, J. J., Lewis, N. K. & Shabram, M. Doppler signatures of the atmospheric circulation on hot Jupiters. Astrophys. J. 762, 24 (2013).
doi: 10.1088/0004-637X/762/1/24
Woitke, P. et al. Equilibrium chemistry down to 100 K. Impact of silicates and phyllosilicates on the carbon to oxygen ratio. Astron. Astrophys. 614, A1 (2018).
doi: 10.1051/0004-6361/201732193