UV absorption by silicate cloud precursors in ultra-hot Jupiter WASP-178b.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
04 2022
Historique:
received: 20 09 2021
accepted: 24 01 2022
entrez: 7 4 2022
pubmed: 8 4 2022
medline: 19 4 2022
Statut: ppublish

Résumé

Aerosols have been found to be nearly ubiquitous in substellar atmospheres

Identifiants

pubmed: 35388193
doi: 10.1038/s41586-022-04453-2
pii: 10.1038/s41586-022-04453-2
doi:

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

49-52

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Cushing, M. C. et al. A Spitzer infrared spectrograph spectral sequence of M, L, and T dwarfs. Astrophys. J. 648, 614–628 (2006).
doi: 10.1086/505637
Saumon, D. & Marley, M. S. The evolution of L and T dwarfs in color-magnitude diagrams. Astrophys. J. 689, 1327–1344 (2008).
doi: 10.1086/592734
Burningham, B. et al. Cloud busting: enstatite and quartz clouds in the atmosphere of 2M2224-0158. Mon. Not. R. Astron. Soc. 506, 1944–1961 (2021).
Gao, P. et al. Aerosol composition of hot giant exoplanets dominated by silicates and hydrocarbon hazes. Nature Astron. 4, 951–956 (2020).
doi: 10.1038/s41550-020-1114-3
Lothringer, J. D. et al. An HST/STIS optical transmission spectrum of warm Neptune GJ 436b. Astron. J. 155, 66 (2018).
doi: 10.3847/1538-3881/aaa008
Kitzmann, D. et al. The peculiar atmospheric chemistry of KELT-9b. Astrophys. J. 863, 183 (2018).
doi: 10.3847/1538-4357/aace5a
Hellier, C. et al. WASP-South hot Jupiters: WASP-178b, WASP-184b, WASP-185b, and WASP-192b. Mon. Not. R. Astron. Soc. 490, 1479–1487 (2019).
doi: 10.1093/mnras/stz2713
Rodr´ıguez Mart´ınez, R. et al. KELT-25 b and KELT-26 b: a hot Jupiter and a substellar companion transiting young a stars observed by TESS. Astron. J 160, 111 (2020).
doi: 10.3847/1538-3881/ab9f2d
Matsushima, S. Radiative opacity in stellar atmospheres. II. Effect of ultraviolet continuum on the photospheric radiation field. Astrophys. J. 154, 715 (1968).
doi: 10.1086/149791
Fontenla, J. M., Stancil, P. C. & Landi, E. Solar spectral irradiance, solar activity, and the near- ultra-violet. Astrophys. J. 809, 157 (2015).
doi: 10.1088/0004-637X/809/2/157
Sharp, C. M. & Burrows, A. Atomic and molecular opacities for brown dwarf and giant planet atmospheres. Astrophys. J. Supp. 168, 140–166 (2007).
doi: 10.1086/508708
Lothringer, J. D., Fu, G., Sing, D. K. & Barman, T. S. UV exoplanet transmission spectral features as probes of metals and rainout. Astrophys. J. Lett. 898, L14 (2020).
doi: 10.3847/2041-8213/aba265
Hoeijmakers, H. J. et al. Hot exoplanet atmospheres resolved with transit spectroscopy (HEARTS). IV. A spectral inventory of atoms and molecules in the high-resolution transmission spectrum of WASP- 121 b. Astron. Astrophys. 641, A123 (2020).
doi: 10.1051/0004-6361/202038365
Stangret, M. et al. Detection of Fe I and Fe II in the atmosphere of MASCARA-2b using a cross- correlation method. Astron. Astrophys. 638, A26 (2020).
doi: 10.1051/0004-6361/202037541
Ehrenreich, D. et al. Nightside condensation of iron in an ultrahot giant exoplanet. Nature 580, 597–601 (2020).
pubmed: 32161364 pmcid: 7212060 doi: 10.1038/s41586-020-2107-1
Kesseli, A. Y. & Snellen, I. A. G. Confirmation of asymmetric iron absorption in WASP-76b with HARPS. Astrophys. J. Lett. 908, L17 (2021).
doi: 10.3847/2041-8213/abe047
Sing, D. K. et al. The Hubble Space Telescope PanCET program: exospheric Mg II and Fe II in the near-ultraviolet transmission spectrum of WASP-121b using jitter decorrelation. Astron. J. 158, 91 (2019).
doi: 10.3847/1538-3881/ab2986
Gibson, N. P. et al. Detection of Fe I in the atmosphere of the ultra-hot Jupiter WASP-121b, and a new likelihood-based approach for Doppler-resolved spectroscopy. Mon. Not. R. Astron. Soc. 493, 2215–2228 (2020).
doi: 10.1093/mnras/staa228
Cabot, S. H. C., Madhusudhan, N., Welbanks, L., Piette, A. & Gandhi, S. Detection of neutral atomic species in the ultra-hot Jupiter WASP-121b. Mon. Not. R. Astron. Soc. 494, 363–377 (2020).
doi: 10.1093/mnras/staa748
Hoeijmakers, H. J. et al. A spectral survey of an ultra-hot Jupiter. Detection of metals in the transmission spectrum of KELT-9 b. Astron. Astrophys. 627, A165 (2019).
doi: 10.1051/0004-6361/201935089
Merritt, S. R. et al. An inventory of atomic species in the atmosphere of WASP-121b using UVES high-resolution spectroscopy. Mon. Not. R. Astron. Soc. 506, 3853–3871 (2021).
Wakeford, H. R. et al. Into the UV: a precise transmission spectrum of HAT-P-41b using Hubble’s WFC3/UVIS G280 grism. Astron. J. 159, 204 (2020).
doi: 10.3847/1538-3881/ab7b78
Visscher, C., Lodders, K. & Fegley, J. B. Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. III. Iron, magnesium, and silicon. Astrophys. J. 716, 1060–1075 (2010).
doi: 10.1088/0004-637X/716/2/1060
Parmentier, V., Showman, A. P. & Fortney, J. J. The cloudy shape of hot Jupiter thermal phase curves. Mon. Not. R. Astron. Soc. 501, 78–108 (2021).
doi: 10.1093/mnras/staa3418
Roman, M. T. et al. Clouds in three-dimensional models of hot Jupiters over a wide range of temperatures. I. Thermal structures and broadband phase-curve predictions. Astrophys. J. 908, 101 (2021).
doi: 10.3847/1538-4357/abd549
Helling, C. et al. Cloud property trends in hot and ultra-hot giant gas planets (WASP-43b, WASP-103b, WASP-121b, HAT-P-7b, and WASP-18b). Astron. Astrophys. 649, A44 (2021).
doi: 10.1051/0004-6361/202039911
Thorngren, D., Gao, P. & Fortney, J. J. The intrinsic temperature and radiative–convective boundary depth in the atmospheres of hot Jupiters. Astrophys. J. Lett. 884, L6 (2019).
doi: 10.3847/2041-8213/ab43d0
Hörst, S. M. et al. Haze production rates in super-Earth and mini-Neptune atmosphere experiments. Nature Astron. 2, 303–306 (2018).
doi: 10.1038/s41550-018-0397-0
Fleury, B., Gudipati, M. S., Henderson, B. L. & Swain, M. Photochemistry in hot H
doi: 10.3847/1538-4357/aaf79f
Kempton, E. M. R. et al. A framework for prioritizing the TESS planetary candidates most amenable to atmospheric characterization. Publ. Astron. Soc. Pac. 130, 114401 (2018).
doi: 10.1088/1538-3873/aadf6f
Mullally, S. E., Rodriguez, D. R., Stevenson, K. B. & Wakeford, H. R. The Exo.MAST table for JWST exoplanet atmosphere observability. Res. Notes AAS 3, 193 (2019).
doi: 10.3847/2515-5172/ab62a1
Luna, J. L. & Morley, C. V. Empirically determining substellar cloud compositions in the era of the James Webb Space Telescope. Astrophys. J. 920, 146 (2021).
doi: 10.3847/1538-4357/ac1865
Evans, T. M. et al. An optical transmission spectrum for the ultra-hot Jupiter WASP-121b measured with the Hubble Space Telescope. Astron. J. 156, 283 (2018).
doi: 10.3847/1538-3881/aaebff
Sing, D. K. et al. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 529, 59–62 (2016).
pubmed: 26675732 doi: 10.1038/nature16068
van Dokkum, P. G. Cosmic-ray rejection by Laplacian edge detection. Publ. Astron. Soc. Pac. 113, 1420–1427 (2001).
doi: 10.1086/323894
Pirzkal, N., Hilbert, B. & Rothberg, B. Trace and Wavelength Calibrations of the UVIS G280 +1/−1 Grism Orders Space Telescope WFC Instrument Science Report (Space Telescope Science Institute, 2017).
Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. Lett. 580, L171–L175 (2002).
doi: 10.1086/345520
Pont, F., Zucker, S. & Queloz, D. The effect of red noise on planetary transit detection. Mon. Not. R. Astron. Soc. 373, 231–242 (2006).
doi: 10.1111/j.1365-2966.2006.11012.x
Winn, J. N. et al. The Transit Light Curve Project. VII. The not-so-bloated exoplanet HAT-P-1b. Astron. J. 134, 1707–1712 (2007).
doi: 10.1086/521599
Hauschildt, P. H., Allard, F. & Baron, E. The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K. Astrophys. J. 512, 377–385 (1999).
doi: 10.1086/306745
Sing, D. K. Stellar limb-darkening coefficients for CoRot and Kepler. Astron. Astrophys. 510, A21 (2010).
doi: 10.1051/0004-6361/200913675
Schaller, G., Schaerer, D., Meynet, G. & Maeder, A. New grids of stellar models from 0.8 to 120 M solar at Z=0.020 and Z=0.001. Astron. Astrophys. Suppl. Ser. 96, 269 (1992).
Barman, T. S., Hauschildt, P. H. & Allard, F. Irradiated planets. Astrophys. J. 556, 885–895 (2001).
doi: 10.1086/321610
Lothringer, J. D., Barman, T. & Koskinen, T. Extremely irradiated hot Jupiters: non-oxide inversions, H
doi: 10.3847/1538-4357/aadd9e
Lothringer, J. D. & Barman, T. The influence of host star spectral type on ultra-hot Jupiter atmo- spheres. Astrophys. J. 876, 69 (2019).
doi: 10.3847/1538-4357/ab1485
Hubeny, I., Burrows, A. & Sudarsky, D. A possible bifurcation in atmospheres of strongly irradiated stars and planets. Astrophys. J. 594, 1011–1018 (2003).
doi: 10.1086/377080
Fortney, J. J., Lodders, K., Marley, M. S. & Freedman, R. S. A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. Astrophys. J. 678, 1419–1435 (2008).
doi: 10.1086/528370
Diamond-Lowe, H., Stevenson, K. B., Bean, J. L., Line, M. R. & Fortney, J. J. New analysis indicates no thermal inversion in the atmosphere of HD 209458b. Astrophys. J. 796, 66 (2014).
doi: 10.1088/0004-637X/796/1/66
Lewis, N. K. et al. Into the UV: the atmosphere of the hot Jupiter HAT-P-41b revealed. Astrophys. J. Lett. 902, L19 (2020).
doi: 10.3847/2041-8213/abb77f
Lothringer, J. D. & Barman, T. S. The PHOENIX exoplanet retrieval algorithm and using H
doi: 10.3847/1538-3881/ab8d33
ter Braak, C. J. F. & Vrugt, J. A. Differential evolution markov chain with snooker updater and fewer chains. Stat. Comput. 18, 435–446 (2008).
doi: 10.1007/s11222-008-9104-9
Lothringer, J. D. et al. A new window into planet formation and migration: refractory-to-volatile elemental ratios in ultra-hot Jupiters. Astrophys. J. 914, 12 (2021).
doi: 10.3847/1538-4357/abf8a9
Wilson, J. et al. Gemini/GMOS optical transmission spectroscopy of WASP-121b: signs of variability in an ultra-hot Jupiter? Mon. Not. R. Astron. Soc. 503, 4787–4801 (2021).
Parmentier, V. & Guillot, T. A non-grey analytical model for irradiated atmospheres. I. Derivation. Astron. Astrophys. 562, A133 (2014).
doi: 10.1051/0004-6361/201322342
Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. AStat. Sci. 7, 457–511 (1992).
doi: 10.1214/ss/1177011136
MacDonald, R. J. & Madhusudhan, N. HD 209458b in new light: detection of nitrogen chemistry, patchy clouds and sub-solar water. Mon. Not. R. Astron. Soc. 469, 1979–1996 (2017).
doi: 10.1093/mnras/stx804
McCullough, P. R., Crouzet, N., Deming, D. & Madhusudhan, N. water vapor in the spectrum of the extrasolar planet HD 189733b. I. The transit. Astrophys. J. 791, 55 (2014).
doi: 10.1088/0004-637X/791/1/55
Rackham, B. V., Apai, D. & Giampapa, M. S. The transit light source effect: false spectral features and incorrect densities for M-dwarf transiting planets. Astrophys. J. 853, 122 (2018).
doi: 10.3847/1538-4357/aaa08c
Rackham, B. V., Apai, D. & Giampapa, M. S. The transit light source effect. II. The impact of stellar heterogeneity on transmission spectra of planets orbiting broadly Sun-like stars. Astron. J. 157, 96 (2019).
doi: 10.3847/1538-3881/aaf892
Kirk, J. et al. ACCESS and LRG-BEASTS: a precise new optical transmission spectrum of the ultrahot Jupiter WASP-103b. Astron. J. 162, 34 (2021).
doi: 10.3847/1538-3881/abfcd2
Kochanek, C. S. et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0. Publ. Astron. Soc. Pac. 129, 104502 (2017).
doi: 10.1088/1538-3873/aa80d9
Jayasinghe, T. et al. The ASAS-SN catalogue of variable stars – II. Uniform classification of 412 000 known variables. Mon. Not. R. Astron. Soc. 486, 1907–1943 (2019).
Lecavelier Des Etangs, A., Pont, F., Vidal-Madjar, A. & Sing, D. Rayleigh scattering in the transit spectrum of HD 189733b. Astron. Astrophys. 481, L83–L86 (2008).
doi: 10.1051/0004-6361:200809388
Ohno, K. & Kawashima, Y. Super-Rayleigh slopes in transmission spectra of exoplanets generated by photochemical haze. Astrophys. J. Lett. 895, L47 (2020).
doi: 10.3847/2041-8213/ab93d7
Powell, D. et al. Transit signatures of inhomogeneous clouds on hot Jupiters: insights from micro- physical cloud modeling. Astrophys. J. 887, 170 (2019).
doi: 10.3847/1538-4357/ab55d9
Espinoza, N. & Jones, K. Constraining mornings and evenings on distant worlds: a new semianalytical approach and prospects with transmission spectroscopy. Astron. J. 162, 165 (2021).
doi: 10.3847/1538-3881/ac134d
Mikal-Evans, T. et al. Diurnal variations in the stratosphere of an ultrahot planet. Nat. Astron. https://doi.org/10.1038/s41550-021-01592-w (2021).
Showman, A. P., Fortney, J. J., Lewis, N. K. & Shabram, M. Doppler signatures of the atmospheric circulation on hot Jupiters. Astrophys. J. 762, 24 (2013).
doi: 10.1088/0004-637X/762/1/24
Woitke, P. et al. Equilibrium chemistry down to 100 K. Impact of silicates and phyllosilicates on the carbon to oxygen ratio. Astron. Astrophys. 614, A1 (2018).
doi: 10.1051/0004-6361/201732193

Auteurs

Joshua D Lothringer (JD)

Department of Physics, Utah Valley University, Orem, UT, USA. jlothringer@uvu.edu.
Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA. jlothringer@uvu.edu.

David K Sing (DK)

Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA. dsing@jhu.edu.
Department of Earth & Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA. dsing@jhu.edu.

Zafar Rustamkulov (Z)

Department of Earth & Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA.

Hannah R Wakeford (HR)

School of Physics, University of Bristol, HH Wills Physics Laboratory, Bristol, UK.

Kevin B Stevenson (KB)

Department of Earth & Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA.
Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA.

Nikolay Nikolov (N)

Space Telescope Science Institute, Baltimore, MD, USA.

Panayotis Lavvas (P)

Groupe de Spectrométrie Moléculaire et Atmosphérique, Université de Reims, Champagne-Ardenne, CNRS UMR F-7331, Reims, France.

Jessica J Spake (JJ)

Department of Astronomy, California Institute of Technology, Pasadena, CA, USA.

Autumn T Winch (AT)

Department of Physics, Bryn Mawr College, Bryn Mawr, PA, USA.

Classifications MeSH