Brain charts for the human lifespan.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
04 2022
04 2022
Historique:
received:
09
06
2021
accepted:
16
02
2022
pubmed:
8
4
2022
medline:
23
4
2022
entrez:
7
4
2022
Statut:
ppublish
Résumé
Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight
Identifiants
pubmed: 35388223
doi: 10.1038/s41586-022-04554-y
pii: 10.1038/s41586-022-04554-y
pmc: PMC9021021
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
525-533Subventions
Organisme : Medical Research Council
ID : MR/K020706/1
Pays : United Kingdom
Organisme : NIA NIH HHS
ID : R01 AG064955
Pays : United States
Organisme : NIA NIH HHS
ID : P01 AG036694
Pays : United States
Organisme : NIMH NIH HHS
ID : K08 MH120564
Pays : United States
Organisme : Medical Research Council
ID : MR/K006355/1
Pays : United Kingdom
Organisme : NIMH NIH HHS
ID : R01 MH120080
Pays : United States
Organisme : Medical Research Council
ID : MC_UU_00030/2
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/N026063/1
Pays : United Kingdom
Organisme : NIA NIH HHS
ID : P30 AG059305
Pays : United States
Organisme : NICHD NIH HHS
ID : P50 HD103525
Pays : United States
Organisme : MRF
ID : MRF_MRF-058-0009-RG-DESR-C0759
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_17230
Pays : United Kingdom
Organisme : NIBIB NIH HHS
ID : R01 EB031284
Pays : United States
Organisme : Medical Research Council
ID : MC_PC_17228
Pays : United Kingdom
Organisme : NIMH NIH HHS
ID : T32 MH019112
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG063689
Pays : United States
Organisme : Medical Research Council
ID : MC_UU_00005/12
Pays : United Kingdom
Organisme : NIMH NIH HHS
ID : R01 MH092535
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG054076
Pays : United States
Organisme : NICHD NIH HHS
ID : P50 HD105351
Pays : United States
Organisme : MRF
ID : MRF_MRF-058-0004-RG-DESRI
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_00030/8
Pays : United Kingdom
Organisme : NIMH NIH HHS
ID : R01 MH078111
Pays : United States
Organisme : The Dunhill Medical Trust
ID : R380R/1114
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/N022556/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_17209
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_00005/8
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/H008217/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_G0802534
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_00005/2
Pays : United Kingdom
Organisme : NIA NIH HHS
ID : P30 AG066546
Pays : United States
Organisme : Medical Research Council
ID : MC_UU_00002/2
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_U105597119
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : NIA NIH HHS
ID : R01 AG058464
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH083824
Pays : United States
Organisme : Medical Research Council
ID : MR/J009482/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/S020306/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_QA137853
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/M009041/1
Pays : United Kingdom
Organisme : NIA NIH HHS
ID : R01 AG022381
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG050595
Pays : United States
Investigateurs
C Rowe
(C)
G B Frisoni
(GB)
A Pichet Binette
(AP)
Commentaires et corrections
Type : CommentIn
Type : CommentIn
Type : CommentIn
Type : CommentIn
Type : CommentIn
Type : ErratumIn
Informations de copyright
© 2022. The Author(s).
Références
Cole, T. J. The development of growth references and growth charts. Ann. Hum. Biol. 39, 382–394 (2012).
pubmed: 22780429
pmcid: 3920659
doi: 10.3109/03014460.2012.694475
Stasinopoulos, D. & Rigby, R. Generalized additive models for location scale and shape (GAMLSS) in R. J. Stat. Softw. 23, 1–46 (2007).
doi: 10.18637/jss.v023.i07
Gilmore, J. H., Knickmeyer, R. C. & Gao, W. Imaging structural and functional brain development in early childhood. Nat. Rev. Neurosci. 19, 123–137 (2018).
pubmed: 29449712
pmcid: 5987539
doi: 10.1038/nrn.2018.1
Tau, G. Z. & Peterson, B. S. Normal development of brain circuits. Neuropsychopharmacology 35, 147–168 (2010).
pubmed: 19794405
doi: 10.1038/npp.2009.115
Grydeland, H. et al. Waves of maturation and senescence in micro-structural MRI markers of human cortical myelination over the lifespan. Cereb. Cortex 29, 1369–1381 (2019).
pubmed: 30590439
doi: 10.1093/cercor/bhy330
Paus, T., Keshavan, M. & Giedd, J. N. Why do many psychiatric disorders emerge during adolescence? Nat. Rev. Neurosci. 9, 947–957 (2008).
pubmed: 19002191
pmcid: 2762785
doi: 10.1038/nrn2513
Jack, C. R. Jr et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013).
pubmed: 23332364
pmcid: 3622225
doi: 10.1016/S1474-4422(12)70291-0
Volpe, J. J. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 8, 110–124 (2009).
pubmed: 19081519
pmcid: 2707149
doi: 10.1016/S1474-4422(08)70294-1
Nosarti, C. et al. Preterm birth and psychiatric disorders in young adult life. Arch. Gen. Psychiatry 69, E1–E8 (2012).
pubmed: 22660967
doi: 10.1001/archgenpsychiatry.2011.1374
Wheater, E. et al. Birth weight is associated with brain tissue volumes seven decades later but not with MRI markers of brain ageing. Neuroimage Clin. 31, https://doi.org/10.1016/j.nicl.2021.102776 (2021).
Vigo, D., Thornicroft, G. & Atun, R. Estimating the true global burden of mental illness. Lancet Psychiatry 3, 171–178 (2016).
pubmed: 26851330
doi: 10.1016/S2215-0366(15)00505-2
Marquand, A. F. et al. Conceptualizing mental disorders as deviations from normative functioning. Mol. Psychiatry 24, 1415–1424 (2019).
pubmed: 31201374
pmcid: 6756106
doi: 10.1038/s41380-019-0441-1
Brewer, J. B. Fully-automated volumetric MRI with normative ranges: translation to clinical practice. Behav. Neurol. 21, 21–28 (2009).
pubmed: 19847042
pmcid: 5444284
doi: 10.1155/2009/616581
Heuer, K. & Toro, R. Role of mechanical morphogenesis in the development and evolution of the neocortex. Phys. Life Rev. 31, 233–239 (2019).
pubmed: 30738760
doi: 10.1016/j.plrev.2019.01.012
Werling, D. M. et al. Whole-genome and RNA sequencing reveal variation and transcriptomic coordination in the developing human prefrontal cortex. Cell Rep. 31, 107489 (2020).
pubmed: 32268104
pmcid: 7295160
doi: 10.1016/j.celrep.2020.03.053
Gandal, M. J., Leppa, V., Won, H., Parikshak, N. N. & Geschwind, D. H. The road to precision psychiatry: translating genetics into disease mechanisms. Nat. Neurosci. 19, 1397–1407 (2016).
pubmed: 27786179
pmcid: 9012265
doi: 10.1038/nn.4409
Opel, N. et al. Cross-disorder analysis of brain structural abnormalities in six major psychiatric disorders: a secondary analysis of mega- and meta-analytical findings from the ENIGMA consortium. Biol. Psychiatry 88, 678–686 (2020).
pubmed: 32646651
doi: 10.1016/j.biopsych.2020.04.027
Li, X. et al. Moving beyond processing and analysis-related variation in neuroscience. Preprint at https://doi.org/10.1101/2021.12.01.470790 (2021).
Peterson, M. R. et al. Normal childhood brain growth and a universal sex and anthropomorphic relationship to cerebrospinal fluid. J. Neurosurg. Pediatr. 9, 458–468 (2021).
doi: 10.3171/2021.2.PEDS201006
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743
pmcid: 6786975
doi: 10.1038/s41586-018-0579-z
Casey, B. J. et al. The Adolescent Brain Cognitive Development (ABCD) study: imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54 (2018).
pubmed: 29567376
pmcid: 5999559
doi: 10.1016/j.dcn.2018.03.001
Zöllei, L., Iglesias, J. E., Ou, Y., Grant, P. E. & Fischl, B. Infant FreeSurfer: an automated segmentation and surface extraction pipeline for T1-weighted neuroimaging data of infants 0–2 years. Neuroimage 218, 116946 (2020).
pubmed: 32442637
doi: 10.1016/j.neuroimage.2020.116946
Kim, H. et al. NEOCIVET: towards accurate morphometry of neonatal gyrification and clinical applications in preterm newborns. Neuroimage 138, 28–42 (2016).
pubmed: 27184202
doi: 10.1016/j.neuroimage.2016.05.034
Borghi, E. et al. Construction of the World Health Organization child growth standards: selection of methods for attained growth curves. Stat. Med. 25, 247–265 (2006).
pubmed: 16143968
doi: 10.1002/sim.2227
Pomponio, R. et al. Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan. Neuroimage 208, 116450 (2020).
pubmed: 31821869
doi: 10.1016/j.neuroimage.2019.116450
Dong, H.-M. et al. Charting brain growth in tandem with brain templates at school age. Sci. Bull. 65, 1924–1934 (2020).
doi: 10.1016/j.scib.2020.07.027
Zuo, X.-N. et al. Human connectomics across the life span. Trends Cogn. Sci. 21, 32–45 (2017).
pubmed: 27865786
doi: 10.1016/j.tics.2016.10.005
Chen, H. et al. Quantile rank maps: a new tool for understanding individual brain development. Neuroimage 111, 454–463 (2015).
pubmed: 25585020
doi: 10.1016/j.neuroimage.2014.12.082
Frangou, S. et al. Cortical thickness across the lifespan: data from 17,075 healthy individuals aged 3–90 years. Hum. Brain Mapp. 43, 431–451 (2021).
pubmed: 33595143
pmcid: 8675431
doi: 10.1002/hbm.25364
Habes, M. et al. The Brain Chart of Aging: machine-learning analytics reveals links between brain aging, white matter disease, amyloid burden, and cognition in the iSTAGING consortium of 10,216 harmonized MR scans. Alzheimers Dement. 17, 89–102 (2021).
pubmed: 32920988
doi: 10.1002/alz.12178
Zhang, H. et al. Growth charts for individualized evaluation of brain morphometry for preschool children. Preprint at https://doi.org/10.1101/2021.04.08.21255068 (2021).
Milham, M., Fair, D., Mennes, M. & Mostofsky, S. The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front. Syst. Neurosci. 6, 62 (2012).
Di Martino, A. et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19, 659–667 (2014).
pubmed: 23774715
doi: 10.1038/mp.2013.78
Snoek, L. et al. AOMIC-PIOP1. OpenNeuro https://doi.org/10.18112/OPENNEURO.DS002785.V2.0.0 (2020).
Bilder, R. et al. UCLA Consortium for Neuropsychiatric Phenomics LA5c Study. OpenNeuro https://doi.org/10.18112/OPENNEURO.DS000030.V1.0.0 (2020).
Nastase, S. A. et al. Narratives. OpenNeuro https://doi.org/10.18112/OPENNEURO.DS002345.V1.1.4 (2020).
Alexander, L. M. et al. An open resource for transdiagnostic research in pediatric mental health and learning disorders. Sci. Data 4, 170181 (2017).
pubmed: 29257126
pmcid: 5735921
doi: 10.1038/sdata.2017.181
Snoek, L. et al. AOMIC-PIOP2. OpenNeuro https://doi.org/10.18112/OPENNEURO.DS002790.V2.0.0 (2020).
Richardson, H., Lisandrelli, G., Riobueno-Naylor, A. & Saxe, R. Development of the social brain from age three to twelve years. Nat. Commun. 9, 1027 (2018).
pubmed: 29531321
pmcid: 5847587
doi: 10.1038/s41467-018-03399-2
Kuklisova-Murgasova, M. et al. A dynamic 4D probabilistic atlas of the developing brain. Neuroimage 54, 2750–2763 (2011).
pubmed: 20969966
doi: 10.1016/j.neuroimage.2010.10.019
Snoek, L. et al. AOMIC-ID1000. OpenNeuro https://doi.org/10.18112/OPENNEURO.DS003097.V1.2.1 (2021).
Reynolds, J. E., Long, X., Paniukov, D., Bagshawe, M. & Lebel, C. Calgary preschool magnetic resonance imaging (MRI) dataset. Data Brief. 29, 105224 (2020).
pubmed: 32071993
pmcid: 7016255
doi: 10.1016/j.dib.2020.105224
Knickmeyer, R. C. et al. A structural MRI study of human brain development from birth to 2 years. J. Neurosci. 28, 12176–12182 (2008).
pubmed: 19020011
pmcid: 2884385
doi: 10.1523/JNEUROSCI.3479-08.2008
Gilmore, J. H. et al. Individual variation of human cortical structure is established in the first year of life. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 971–980 (2020).
pubmed: 32741702
pmcid: 7860052
Courchesne, E. et al. Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology 216, 672–682 (2000).
pubmed: 10966694
doi: 10.1148/radiology.216.3.r00au37672
Narvacan, K., Treit, S., Camicioli, R., Martin, W. & Beaulieu, C. Evolution of deep gray matter volume across the human lifespan. Hum. Brain Mapp. 38, 3771–3790 (2017).
pubmed: 28548250
pmcid: 6867004
doi: 10.1002/hbm.23604
Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).
pubmed: 16530430
doi: 10.1016/j.neuroimage.2006.01.021
Vasung, L. et al. Association between quantitative MR markers of cortical evolving organization and gene expression during human prenatal brain development. Cereb. Cortex 31, 3610–3621 (2021).
pubmed: 33836056
pmcid: 8258434
doi: 10.1093/cercor/bhab035
Fjell, A. M. et al. Development and aging of cortical thickness correspond to genetic organization patterns. Proc. Natl Acad. Sci. USA 112, 15462–15467 (2015).
pubmed: 26575625
pmcid: 4687601
doi: 10.1073/pnas.1508831112
Sydnor, V. J. et al. Neurodevelopment of the association cortices: patterns, mechanisms, and implications for psychopathology. Neuron 109, 2820–2846 (2021).
pubmed: 34270921
pmcid: 8448958
doi: 10.1016/j.neuron.2021.06.016
Tanner, J. M. Growth at Adolescence 2nd edn (Thomas, 1962).
Bozzola, M. & Meazza, C. In Handbook of Growth and Growth Monitoring in Health and Disease (ed. Preedy, V. R.) 2999–3011 (2012).
Tanner, J. M., Whitehouse, R. H. & Takaishi, M. Standards from birth to maturity for height, weight, height velocity, and weight velocity: British children, 1965. I. Arch. Dis. Child. 41, 454–471 (1966).
pubmed: 5957718
pmcid: 2019592
doi: 10.1136/adc.41.219.454
Dubois, J. et al. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276, 48–71 (2014).
pubmed: 24378955
doi: 10.1016/j.neuroscience.2013.12.044
Huttenlocher, P. R. & Dabholkar, A. S. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387, 167–178 (1997).
pubmed: 9336221
doi: 10.1002/(SICI)1096-9861(19971020)387:2<167::AID-CNE1>3.0.CO;2-Z
Mountcastle, V. B. The columnar organization of the neocortex. Brain 120, 701–722 (1997).
pubmed: 9153131
doi: 10.1093/brain/120.4.701
Petanjek, Z. et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc. Natl Acad. Sci. USA 108, 13281–13286 (2011).
pubmed: 21788513
pmcid: 3156171
doi: 10.1073/pnas.1105108108
Miller, D. J. et al. Prolonged myelination in human neocortical evolution. Proc. Natl Acad. Sci. USA 109, 16480–16485 (2012).
pubmed: 23012402
pmcid: 3478650
doi: 10.1073/pnas.1117943109
Holland, D. et al. Structural growth trajectories and rates of change in the first 3 months of infant brain development. JAMA Neurol. 71, 1266–1274 (2014).
pubmed: 25111045
pmcid: 4940157
doi: 10.1001/jamaneurol.2014.1638
Blüml, S. et al. Metabolic maturation of the human brain from birth through adolescence: insights from in vivo magnetic resonance spectroscopy. Cereb. Cortex 23, 2944–2955 (2013).
pubmed: 22952278
doi: 10.1093/cercor/bhs283
Kuzawa, C. W. et al. Metabolic costs and evolutionary implications of human brain development. Proc. Natl Acad. Sci. USA 111, 13010–13015 (2014).
pubmed: 25157149
pmcid: 4246958
doi: 10.1073/pnas.1323099111
WHO Multicentre Growth Reference Study Group. WHO Motor Development Study: windows of achievement for six gross motor development milestones. Acta Paediatr. 95, 86–95 (2007).
doi: 10.1111/j.1651-2227.2006.tb02379.x
Kang, H. J. et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483–489 (2011).
pubmed: 22031440
pmcid: 3566780
doi: 10.1038/nature10523
Sorva, R., Lankinen, S., Tolppanen, E. M. & Perheentupa, J. Variation of growth in height and weight of children. II. After infancy. Acta Paediatr. Scand. 79, 498–506 (1990).
pubmed: 2386041
doi: 10.1111/j.1651-2227.1990.tb11503.x
Elliott, L. T. et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat. Neurosci. 562, 210–216 (2018).
Hendrickson, M. A. & Pitt, M. B. Three areas where our growth chart conversations fall short—room to grow. JAMA Pediatr. 176, 123–124 (2021).
doi: 10.1001/jamapediatrics.2021.4330
Marquand, A. F., Rezek, I., Buitelaar, J. K. & Beckmann, C. F. Understanding heterogeneity in clinical cohorts using normative models: beyond case–control studies. Biol. Psychiatry 80, 552–561 (2016).
pubmed: 26927419
pmcid: 5023321
doi: 10.1016/j.biopsych.2015.12.023
Shen, F. X. et al. Emerging ethical issues raised by highly portable MRI research in remote and resource-limited international settings. Neuroimage 238, 118210 (2021).
pubmed: 34062266
doi: 10.1016/j.neuroimage.2021.118210
Sharma, E. et al. Consortium on Vulnerability to Externalizing Disorders and Addictions (cVEDA): a developmental cohort study protocol. BMC Psychiatry 20, 2 (2020).
pubmed: 31898525
pmcid: 6941284
doi: 10.1186/s12888-019-2373-3
Liu, S. et al. Chinese Color Nest Project: an accelerated longitudinal brain-mind cohort. Dev. Cogn. Neurosci. 52, 101020 (2021).
pubmed: 34653938
pmcid: 8517840
doi: 10.1016/j.dcn.2021.101020
Shansky, R. M. & Murphy, A. Z. Considering sex as a biological variable will require a global shift in science culture. Nat. Neurosci. 24, 457–464 (2021).
pubmed: 33649507
doi: 10.1038/s41593-021-00806-8
Engemann, D. A. et al. Combining magnetoencephalography with magnetic resonance imaging enhances learning of surrogate-biomarkers. eLife 9, e54055 (2020).
pubmed: 32423528
pmcid: 7308092
doi: 10.7554/eLife.54055
Solmi, M. et al. Age at onset of mental disorders worldwide: large-scale meta-analysis of 192 epidemiological studies. Mol. Psychiatry https://doi.org/10.1038/s41380-021-01161-7 (2021).
Wierenga, L. M. et al. Greater male than female variability in regional brain structure across the lifespan. Hum. Brain Mapp. 43, 470–499 (2020).
pubmed: 33044802
pmcid: 8675415
doi: 10.1002/hbm.25204
Heude, B. et al. A big-data approach to producing descriptive anthropometric references: a feasibility and validation study of paediatric growth charts. Lancet Digit Health 1, e413–e423 (2019).
pubmed: 33323223
doi: 10.1016/S2589-7500(19)30149-9
Erkkinen, M. G., Kim, M.-O. & Geschwind, M. D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 10, a033118 (2018).
pubmed: 28716886
pmcid: 5880171
doi: 10.1101/cshperspect.a033118
Bethlehem, R. A. I. et al. A normative modelling approach reveals age-atypical cortical thickness in a subgroup of males with autism spectrum disorder. Commun Biol 3, 486 (2020).
pubmed: 32887930
pmcid: 7474067
doi: 10.1038/s42003-020-01212-9