Application of "OTSU"-an image segmentation method for differentiation of snow and ice regions of glaciers and assessment of mass budget in Chandra basin, Western Himalaya using Remote Sensing and GIS techniques.


Journal

Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350

Informations de publication

Date de publication:
07 Apr 2022
Historique:
received: 09 11 2021
accepted: 12 03 2022
entrez: 7 4 2022
pubmed: 8 4 2022
medline: 12 4 2022
Statut: epublish

Résumé

In this study, an image segmentation algorithm ("OTSU") is applied for differentiation of snow/ice regions followed by interpretation of snowlines and estimation of mass budget of glaciers in Chandra basin, Western Himalaya, India between 2014 and 2020. The observations strongly suggest that the OTSU method can be used to differentiate the snow and ice regions on a glacier accurately from any satellite image, irrespective of the sensor characteristics. Also, this method suits well to delineate the snowlines for large sample of glaciers, other than the manual interpretation and semi-automated methods. The estimates of mass budget of the glaciers are observed varying from - 1.20 ± 0.51 m w.e to almost 0.64 ± 0.51 m w.e, with a total loss of - 61.91 ± 6.70 m w.e of ice mass at basin scale during the observation period. Based on this study, it is highly recommended the application of OTSU method for the differentiation of snow/ice zones of glaciers and snowline demarcation at a large spatial scale in the harsh weather rugged terrain of the Western Himalaya.

Identifiants

pubmed: 35389121
doi: 10.1007/s10661-022-09945-2
pii: 10.1007/s10661-022-09945-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

337

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., & Bajracharya, S. (2012). The state and fate of Himalayan glaciers. Science, 336(6079), 310–314.
doi: 10.1126/science.1215828
Bishop, M. P., Olsenholler, J. A., Shroder, J. F., Barry, R. G., Raup, B. H., Bush, A. B., Copland, L., Dwyer, J. L., Fountain, A. G., Haeberli, W., & Kääb, A. (2004). Global Land Ice Measurements from Space (GLIMS): Remote sensing and GIS investigations of the Earth’s cryosphere. Geocarto International, 19(2), 57–84.
doi: 10.1080/10106040408542307
Braithwaite, R. J., & Zhang, Y. (1999). Modelling changes in glacier mass balance that may occur as a result of climate changes. Geografiska Annaler: Series a, Physical Geography, 81(4), 489–496.
doi: 10.1111/j.0435-3676.1999.00078.x
Braithwaite, R. J. (1984). Calculation of degree-days for glacier-climate research. Z. Gletscherkd. Glazialgeol, 20, 1–20.
Bronge, L. B., & Bronge, C. (1999). Ice and snow-type classification in the Vestfold Hills, East Antarctica, using Landsat-TM data and ground radiometer measurements. International Journal of Remote Sensing, 20(2), 225-240.
Chan, J. C. W., Van Ophem, J., & Huybrechts, P. (2009). Estimation of accumulation area ratio of a glacier from multitemporal satellite images using spectral unmixing. IEEE International Geoscience and Remote Sensing Symposium, 2, 606.
Cuffey, K. M., & Paterson, W. S. B. (2010). The physics of glaciers. Academic Press.
De Angelis, H. (2007). Glacial geomorphology of the east-central Canadian Arctic. Journal of Maps, 3(1), 323–341.
Duethmann, D., Bolch, T., Farinotti, D., Kriegel, D., Vorogushyn, S., Merz, B., Pieczonka, T., Jiang, T., Su, B. & Güntner, A. (2015). Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River Central Asia. Water Resources Research 51(6), 4727–4750. https://doi.org/10.1002/2014WR016716
Yin, D., Cao, X., Chen, X., Shao, Y., & Chen, J. (2013). Comparison of automatic thresholding methods for snow-cover mapping using Landsat TM imagery. International Journal of Remote Sensing, 34(19), 6529–6538.
doi: 10.1080/01431161.2013.803631
Farinotti, D., Longuevergne, L., Moholdt, G., Duethmann, D., Mölg, T., Bolch, T., Vorogushyn, S., & Güntner, A. (2015). Substantial glacier mass loss in the Tien Shan over the past 50 years. Nature Geoscience, 8(9), 716–722.
doi: 10.1038/ngeo2513
Guo, Z., Wang, N., Kehrwald, N. M., Mao, R., Wu, H., Wu, Y., & Jiang, X. (2014). Temporal and spatial changes in Western Himalayan firn line altitudes from 1998 to 2009. Global and Planetary Change, 118, 97–105.
doi: 10.1016/j.gloplacha.2014.03.012
Gaddam, V. K., Kulkarni, A. V., & Gupta, A. K. (2016). Estimation of glacial retreat and mass loss in Baspa basin, Western Himalaya. Spatial Information Research, 24(3), 257–266.
doi: 10.1007/s41324-016-0026-x
Gaddam, V. K., Kulkarni, A. V., & Gupta, A. K. (2020). Assessment of the Baspa basin glaciers mass budget using different remote sensing methods and modeling techniques. Geocarto International, 35(3), 296–316.
doi: 10.1080/10106049.2018.1516247
Hanshaw, M. N., & Bookhagen, B. (2014). Glacial areas, lake areas, and snow lines from 1975 to 2012: Status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru. The Cryosphere, 8(2), 359–376.
doi: 10.5194/tc-8-359-2014
Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7(1), 1–18.
doi: 10.1038/s41597-020-0453-3
Hall, D. K., & Riggs, G. A. (2010). Normalized-difference snow index (NDSI).
Huss, M. (2011). Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe. Water Resources Research, 47(7).
Haeberli, W., & Hölzle, M. (1995). Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: A pilot study with the European Alps. Annals of Glaciology, 21, 206–212.
doi: 10.3189/S0260305500015834
Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R. S., Clague, J. J., Vuille, M., Buytaert, W., Cayan, D. R., Greenwood, G., & Mark, B. G. (2017). Toward mountains without permanent snow and ice. Earth’s Future, 5(5), 418–435.
doi: 10.1002/2016EF000514
Immerzeel, W. (2020). Water Towers Threatened. Chemistry and Industry, 84(12), 30–33.
doi: 10.1002/cind.8412_9.x
Kääb, A., Berthier, E., Nuth, C., Gardelle, J., & Arnaud, Y. (2012). Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488(7412), 495–498.
doi: 10.1038/nature11324
Kulkarni, A. V. (2010). Monitoring Himalayan cryosphere using remote sensing techniques. Journal of the Indian Institute of Science, 90(4), 457–469.
Krajčí, P., Holko, L., Perdigão, R. A., & Parajka, J. (2014). Estimation of regional snowline elevation (RSLE) from MODIS images for seasonally snow covered mountain basins. Journal of Hydrology, 519, 1769–1778.
doi: 10.1016/j.jhydrol.2014.08.064
Krijger, J. M., Aben, I., & Schrijver, H. (2005). Distinction between clouds and ice/snow covered surfaces in the identification of cloud-free observations using SCIAMACHY PMDs. Atmospheric Chemistry and Physics, 5(10), 2729–2738.
doi: 10.5194/acp-5-2729-2005
Kulkarni, A. V., Randhawa, S. S., Rathore, B. P., Bahuguna, I. M., & Sood, R. K. (2002). Snow and glacier melt runoff model to estimate hydropower potential. Journal of the Indian Society of Remote Sensing, 30(4), 221–228.
doi: 10.1007/BF03000365
Kuhn, M. (1989). The response of the equilibrium line altitude to climate fluctuations: theory and observations. In Glacier fluctuations and climatic change Springer Dordrecht, 407–417).
Liu, C., Li, Z., Zhang, P., Tian, B., Zhou, J., & Chen, Q. (2021). Variability of the snowline altitude in the eastern Tibetan Plateau from 1995 to 2016 using Google Earth Engine. Journal of Applied Remote Sensing, 15(4), 048505.
Lemke, P., Ren, J., Alley, R. B., Allison, I., Carrasco, J., Flato, G., Fujii, Y., Kaser, G., Mote, P., Thomas, R. H., & Zhang, T. (2007). Observations: changes in snow, ice and frozen ground.
Maurício, C. R., Cordeiro, J.-M., & Santiago Pe˜na-Luque,. (2021). Automatic water detection from multidimensional hierarchical clustering for Sentinel-2 images and a comparison with Level 2A processors. Remote Sensing of Environment, 253, 112209. https://doi.org/10.1016/j.rse.2020.112209
doi: 10.1016/j.rse.2020.112209
Medwedeff, W. G., & Roe, G. H. (2017). Trends and variability in the global dataset of glacier mass balance. Climate Dynamics, 48, 3085–3097.
doi: 10.1007/s00382-016-3253-x
Mark, B. G., McKenzie, J. M. & Gomez, J. (2005). Hydrochemical evaluation of changing glacier meltwater contribution to stream discharge: Callejon de Huaylas, Peru/Evaluation hydrochimique de la contribution évolutive de la fonte glaciaire à l'écoulement fluvial: Callejon de Huaylas, Pérou. Hydrological Sciences Journal, 50(6).
Mandal, A., Ramanathan, A., Azam, M. F., Angchuk, T., Soheb, M., Kumar, N., Pottakkal, J. G., Vatsal, S., Mishra, S., & Singh, V. B. (2020). Understanding the interrelationships among mass balance, meteorology, discharge and surface velocity on Chhota Shigri Glacier over 2002–2019 using in situ measurements. Journal of Glaciology, 66(259), 727–741.
doi: 10.1017/jog.2020.42
McFadden, E. M., Ramage, J., & Rodbell, D. T. (2011). Landsat TM and ETM+ derived snowline altitudes in the Cordillera Huayhuash and Cordillera Raura, Peru, 1986–2005. The Cryosphere, 5(2), 419–430.
doi: 10.5194/tc-5-419-2011
Nagajyothi, V., Priya, M. G., Sharma, P., & Bahuguna, I.M. (2020). Mass balance of glaciers in Bhaga basin, Western Himalaya: A geospatial and temperature-weighted AAR based model approach. Current Science, 119(12).
Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybernetics, 9, 62–66. https://doi.org/10.1109/TSMC.1979.4310076
doi: 10.1109/TSMC.1979.4310076
Purinton, B., & Bookhagen, B. (2017). Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau. Earth Surface Dynamics, 5(2), 211–237.
doi: 10.5194/esurf-5-211-2017
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., Hagen, J. O., Hock, R., Kaser, G., Kienholz, C., & Miles, E. S. (2014). The Randolph Glacier Inventory: A globally complete inventory of glaciers. Journal of Glaciology, 60(221), 537–552.
doi: 10.3189/2014JoG13J176
Pandey, P., Kulkarni, A. V., & Venkataraman, G. (2013). Remote sensing study of snowline altitude at the end of melting season, Chandra-Bhaga basin, Himachal Pradesh, 1980–2007. Geocarto International, 28(4), 311–322.
doi: 10.1080/10106049.2012.705336
Painter, T. H., Roberts, D. A., Green, R. O., & Dozier, J. (1998). The effect of grain size on spectral mixture analysis of snow-covered area from AVIRIS data. Remote Sensing of Environment, 65(3), 320–332.
doi: 10.1016/S0034-4257(98)00041-8
Raup, B., Racoviteanu, A., Khalsa, S. J. S., Helm, C., Armstrong, R., & Arnaud, Y. (2007a). The GLIMS geospatial glacier database: A new tool for studying glacier change. Global and Planetary Change, 56(1–2), 101–110.
doi: 10.1016/j.gloplacha.2006.07.018
Raup, B., Kääb, A., Kargel, J. S., Bishop, M. P., Hamilton, G., Lee, E., Paul, F., Rau, F., Soltesz, D., Khalsa, S. J. S., & Beedle, M. (2007b). Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) project. Computers and Geosciences, 33(1), 104–125.
doi: 10.1016/j.cageo.2006.05.015
Roe, G. H., & Baker, M. B. (2016). The response of glaciers to climatic persistence. Journal of Glaciology, 62(233), 440–450.
doi: 10.1017/jog.2016.4
Rastner, P., Prinz, R., Notarnicola, C., Nicholson, L., Sailer, R., Schwaizer, G., & Paul, F. (2019). On the automated mapping of snow cover on glaciers and calculation of snow line altitudes from multi-temporal landsat data. Remote Sensing, 11(12), 1410.
doi: 10.3390/rs11121410
Rabatel, A., Francou, B., Soruco, A., Gomez, J., Cáceres, B., Ceballos, J. L., Basantes, R., Vuille, M., Sicart, J. E., Huggel, C., & Scheel, M. (2013). Current state of glaciers in the tropical Andes: A multi-century perspective on glacier evolution and climate change. The Cryosphere, 7(1), 81–102.
doi: 10.5194/tc-7-81-2013
Rabatel, A., Sirguey, P., Drolon, V., Maisongrande, P., Arnaud, Y., Berthier, E., Davaze, L., Dedieu, J. P., & Dumont, M. (2017). Annual and seasonal glacier-wide surface mass balance quantified from changes in glacier surface state: A review on existing methods using optical satellite imagery. Remote Sensing, 9(5), 507.
doi: 10.3390/rs9050507
Rabatel, A., Dedieu, J. P., & Vincent, C. (2005). Using remote-sensing data to determine equilibrium-line altitude and mass-balance time series: Validation on three French glaciers, 1994–2002. Journal of Glaciology, 51(175), 539–546.
doi: 10.3189/172756505781829106
Stumm, D., Joshi, S. P., Gurung, T. R. & Silwal, G. (2020). Mass balances of Yala and Rikha Samba Glacier, Nepal from 2000 to 2017. Earth System Science Data Discussions, 1–37.
Mahajan, S., & Fataniya, B. (2020). Cloud detection methodologies: Variants and development—A review. Complex & Intelligent Systems, 6(2), 251–261.
doi: 10.1007/s40747-019-00128-0
Paterson, W. S. B. (1994). The physics of glaciers. 3rd edition. Oxford, etc., Pergamon, 480 pp. ISBN 0-08037945.
Pfeffer, W., Arendt, A., Bliss, A., Bolch, T., Cogley, J., Gardner, A., ..Sharp, M. (2014). The Randolph Glacier Inventory: A globally complete inventory of glaciers. Journal of Glaciology, 60(221), 537–552. https://doi.org/10.3189/2014JoG13J176
Sidjak, R. W. (1999). Glacier mapping of the Illecillewaet icefield, British Columbia, Canada, using Landsat TM and digital elevation data. International Journal of Remote Sensing, 20(2), 273–284.
doi: 10.1080/014311699213442
Singh, A. T., Rahaman, W., Sharma, P., Laluraj, C. M., Patel, L. K., Pratap, B., Gaddam, V. K., & Thamban, M. (2019). Moisture sources for precipitation and hydrograph components of the sutri dhaka glacier basin, western himalayas. Water, 11(11), 2242.
doi: 10.3390/w11112242
Shiramizu, K., Doi, K., & Aoyama, Y. (2017). Generation of a high-accuracy regional DEM based on ALOS/PRISM imagery of East Antarctica. Polar Science, 14, 30–38.
Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H. O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., Van Diemen, R. & Ferrat, M. (2019). IPCC, 2019: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.
Soheb, M., Ramanathan, A., Angchuk, T., Mandal, A., Kumar, N., & Lotus, S. (2020). Mass-balance observation, reconstruction and sensitivity of Stok glacier, Ladakh region, India, between 1978 and 2019. Journal of Glaciology, 66(258), 627–642.
doi: 10.1017/jog.2020.34
Tawde, S. A., Kulkarni, A. V., & Bala, G. (2019). An assessment of climate change impacts on glacier mass balance and geometry in the Chandra Basin, Western Himalaya for the 21st century. Environmental Research Communications, 1(4), 041003.
Tawde, S. A., Kulkarni, A. V., & Bala, G. (2017). An estimate of glacier mass balance for the Chandra basin, western Himalaya, for the period 1984–2012. Annals of Glaciology, 58(75pt2), pp.99–109.
Tawde, S. A., Kulkarni, A. V., & Bala, G. (2018). April. 21st century projections of glacier mass balance, extent and volume for the Chandra Basin using downscaled CMIP5 data and a glacier geometry model. EGU General Assembly Conference Abstracts, 394.
Vijay, S., & Braun, M. (2016). Elevation change rates of glaciers in the Lahaul-Spiti (Western Himalaya, India) during 2000–2012 and 2012–2013. Remote Sensing, 8(12), 1038.
doi: 10.3390/rs8121038
Wagnon, P., Linda, A., Arnaud, Y., Kumar, R., Sharma, P., Vincent, C., Pottakkal, J. G., Berthier, E., Ramanathan, A., Hasnain, S. I., & Chevallier, P. (2007). Four years of mass balance on Chhota Shigri Glacier, Himachal Pradesh, India, a new benchmark glacier in the western Himalaya. Journal of Glaciology, 53(183), 603–611.
doi: 10.3189/002214307784409306
Yuwei, W. U., Jianqiao, H. E., Zhongming, G. U. O., & Anan, C. (2014). Limitations in identifying the equilibrium-line altitude from the optical remote-sensing derived snowline in the Tien Shan, China. Journal of Glaciology, 60(224), 1093–1100.
doi: 10.3189/2014JoG13J221
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I., & Thomson, L. (2019). Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568(7752), 382–386.
doi: 10.1038/s41586-019-1071-0
Yan, D., Huang, C., Ma, N., & Zhang, Y. (2020). Improved landsat-based water and snow indices for extracting lake and snow cover/glacier in the tibetan plateau. Water, 12(5), 1339.
doi: 10.3390/w12051339

Auteurs

Vinay Kumar Gaddam (VK)

Department of Civil Engineering, Dhanekula Institute of Engineering and Technology, JNTU, Kakinada, India. Gaddam_vinay@ymail.com.
Polar Sciences Group, ESSO-National Centre for Polar Sciences and Ocean Research, South Goa, Goa, India. Gaddam_vinay@ymail.com.

Ramya Boddapati (R)

Department of Civil Engineering, Dhanekula Institute of Engineering and Technology, JNTU, Kakinada, India.

Tanooj Kumar (T)

Department of Computer Science and Engineering, Dhanekula Institute of Engineering and Technology, JNTU, Kakinada, India.

Anil V Kulkarni (AV)

DST Centre of Excellence, Divecha Centre for Climate Change, Indian Institute of Science, Bangalore, India.

Helgi Bjornsson (H)

Department of Earth Sciences, University of Iceland, Reykjavik, Iceland.

Articles similaires

India Carbon Sequestration Environmental Monitoring Carbon Biomass
Humans Depression Geographic Information Systems Female Adult
Rivers Turkey Biodiversity Environmental Monitoring Animals
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests

Classifications MeSH