Spatial transcriptomics reveals antiparasitic targets associated with essential behaviors in the human parasite Brugia malayi.


Journal

PLoS pathogens
ISSN: 1553-7374
Titre abrégé: PLoS Pathog
Pays: United States
ID NLM: 101238921

Informations de publication

Date de publication:
04 2022
Historique:
received: 14 10 2021
accepted: 25 02 2022
revised: 19 04 2022
pubmed: 8 4 2022
medline: 22 4 2022
entrez: 7 4 2022
Statut: epublish

Résumé

Lymphatic filariasis (LF) is a chronic debilitating neglected tropical disease (NTD) caused by mosquito-transmitted nematodes that afflicts over 60 million people. Control of LF relies on routine mass drug administration with antiparasitics that clear circulating larval parasites but are ineffective against adults. The development of effective adulticides is hampered by a poor understanding of the processes and tissues driving parasite survival in the host. The adult filariae head region contains essential tissues that control parasite feeding, sensory, secretory, and reproductive behaviors, which express promising molecular substrates for the development of antifilarial drugs, vaccines, and diagnostics. We have adapted spatial transcriptomic approaches to map gene expression patterns across these prioritized but historically intractable head tissues. Spatial and tissue-resolved data reveal distinct biases in the origins of known drug targets and secreted antigens. These data were used to identify potential new drug and vaccine targets, including putative hidden antigens expressed in the alimentary canal, and to spatially associate receptor subunits belonging to druggable families. Spatial transcriptomic approaches provide a powerful resource to aid gene function inference and seed antiparasitic discovery pipelines across helminths of relevance to human and animal health.

Identifiants

pubmed: 35390105
doi: 10.1371/journal.ppat.1010399
pii: PPATHOGENS-D-21-02069
pmc: PMC9017939
doi:

Substances chimiques

Anti-Infective Agents 0
Antiparasitic Agents 0
Vaccines 0

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

e1010399

Subventions

Organisme : NIAID NIH HHS
ID : F32 AI152347
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI151171
Pays : United States
Organisme : NIAID NIH HHS
ID : T32 AI007414
Pays : United States

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Références

BMC Bioinformatics. 2019 Sep 14;20(1):473
pubmed: 31521110
Immunity. 2018 Nov 20;49(5):801-818
pubmed: 30462997
Exp Parasitol. 1981 Feb;51(1):42-58
pubmed: 7461090
Parasitol Res. 1995;81(5):403-11
pubmed: 7501640
Acta Med Okayama. 1974 Jun;28(3):219-42
pubmed: 4280233
Opt Lett. 2007 Sep 1;32(17):2608-10
pubmed: 17767321
Dev Biol. 1977 Mar;56(1):110-56
pubmed: 838129
Parasitology. 1996 Jul;113 ( Pt 1):71-85
pubmed: 8710418
Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2674-9
pubmed: 10716995
J Parasitol. 1977 Dec;63(6):992-1000
pubmed: 592054
J Comput Biol. 2000;7(6):761-76
pubmed: 11382360
Development. 2012 Sep;139(17):3242-7
pubmed: 22872089
Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7550-5
pubmed: 9636187
PLoS Negl Trop Dis. 2011 Mar 29;5(3):e998
pubmed: 21468315
Adv Parasitol. 2016;93:353-96
pubmed: 27238008
Int J Parasitol Drugs Drug Resist. 2014 Jan 31;4(2):71-6
pubmed: 25057456
PLoS Negl Trop Dis. 2018 May 21;12(5):e0006509
pubmed: 29782496
Expert Rev Vaccines. 2014 Apr;13(4):473-87
pubmed: 24606541
PLoS Negl Trop Dis. 2011 May;5(5):e1174
pubmed: 21629728
ACS Infect Dis. 2021 Apr 9;7(4):790-799
pubmed: 33667079
JAMA. 1988 Jun 3;259(21):3150-3
pubmed: 3285045
Mol Biol Evol. 2013 Apr;30(4):772-80
pubmed: 23329690
BMC Evol Biol. 2019 Jun 13;19(1):121
pubmed: 31195978
BMC Genomics. 2009 Jun 15;10:267
pubmed: 19527522
Vet J. 1997 Jul;154(1):11-34
pubmed: 9265850
Parasitology. 1997 Nov;115 ( Pt 5):553-61
pubmed: 9368907
Genome Biol. 2014;15(12):550
pubmed: 25516281
Bioinformatics. 2001 Sep;17(9):849-50
pubmed: 11590105
Nature. 2021 Aug;596(7871):211-220
pubmed: 34381231
Nucleic Acids Res. 2020 Jul 27;48(13):7119-7134
pubmed: 32542321
Vet Parasitol. 2011 Sep 27;181(2-4):388-92
pubmed: 21570194
PLoS One. 2012;7(6):e38011
pubmed: 22723842
Bioinformatics. 2018 Sep 1;34(17):i884-i890
pubmed: 30423086
PLoS Negl Trop Dis. 2015 Sep 14;9(9):e0004054
pubmed: 26367142
PLoS Pathog. 2014 Feb 27;10(2):e1003930
pubmed: 24586152
Int J Parasitol. 1997 Apr;27(4):359-66
pubmed: 9184927
Parasitol Res. 2014 May;113(5):1827-35
pubmed: 24664084
J Parasitol. 1961 Apr;47:251-62
pubmed: 13731155
Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2782-7
pubmed: 19196974
PLoS Negl Trop Dis. 2016 Jan 04;10(1):e0004311
pubmed: 26727204
Parasit Vectors. 2014 Jan 22;7:43
pubmed: 24450869
Mol Biochem Parasitol. 2008 Jul;160(1):8-21
pubmed: 18439691
J Parasitol. 1962 Oct;48:693-706
pubmed: 13976564
PLoS Negl Trop Dis. 2017 Mar 30;11(3):e0005357
pubmed: 28358880
Dev Cell. 2018 Dec 17;47(6):801-813.e6
pubmed: 30416013
Mol Biochem Parasitol. 1992 Aug;54(1):51-62
pubmed: 1518532
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
Parasitol Res. 2013 Sep;112(9):3091-100
pubmed: 23760875
Lancet. 2018 Nov 10;392(10159):1789-1858
pubmed: 30496104
Clin Microbiol Rev. 2013 Jul;26(3):381-421
pubmed: 23824365
PLoS Negl Trop Dis. 2011 Dec;5(12):e1409
pubmed: 22180794
Vet Parasitol. 2014 Nov 15;206(1-2):38-42
pubmed: 24594213
PLoS Negl Trop Dis. 2008 May 14;2(5):e237
pubmed: 18478049
Parasitol Open. 2019;5:
pubmed: 33777408
Parasite Immunol. 1996 Jan;18(1):29-42
pubmed: 9223154
J Parasitol. 1971 Jun;57(3):449-68
pubmed: 5090953
Vet Parasitol. 2015 Jun 15;210(3-4):167-78
pubmed: 25936435
Parasitol Res. 2019 Jun;118(6):1849-1863
pubmed: 31055672
Infect Dis Poverty. 2015 Jul 30;4:34
pubmed: 26229599
Exp Parasitol. 1993 Aug;77(1):88-96
pubmed: 8344410
Nat Genet. 2019 Jan;51(1):163-174
pubmed: 30397333
Trends Parasitol. 2004 Oct;20(10):469-76
pubmed: 15363440
Philos Trans R Soc Lond B Biol Sci. 1986 Nov 12;314(1165):1-340
pubmed: 22462104
J Extracell Vesicles. 2020 Dec;10(2):e12036
pubmed: 33318780
J Parasitol. 1975 Jun;61(3):499-512
pubmed: 1138041
PLoS Negl Trop Dis. 2008;2(10):e326
pubmed: 18958170
PLoS Negl Trop Dis. 2018 Apr 16;12(4):e0006438
pubmed: 29659599
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
J Cell Biol. 1966 Aug;30(2):424-32
pubmed: 4165523
Mol Biol Evol. 2018 Feb 1;35(2):518-522
pubmed: 29077904
Nat Biotechnol. 2017 Apr 11;35(4):316-319
pubmed: 28398311
Mol Biol Evol. 2015 Jan;32(1):268-74
pubmed: 25371430
J Helminthol. 1956;30(1):1-20
pubmed: 13319678
BMC Bioinformatics. 2010 May 21;11:274
pubmed: 20492697
Microbiol Resour Announc. 2018 Nov 8;7(18):
pubmed: 30533772
Bioinformatics. 2009 Aug 1;25(15):1972-3
pubmed: 19505945
PLoS Pathog. 2021 Jul 22;17(7):e1009682
pubmed: 34293063
Trends Parasitol. 2021 Jun;37(6):468-475
pubmed: 33563557
Parasitology. 2015 Sep;142(10):1249-59
pubmed: 26040450
Nat Methods. 2017 Jun;14(6):587-589
pubmed: 28481363
J Ultrastruct Res. 1983 Feb;82(2):156-71
pubmed: 6827646
Mol Biochem Parasitol. 2001 Nov;118(1):89-96
pubmed: 11704277
Cell. 2014 Oct 23;159(3):662-75
pubmed: 25417113
PLoS Negl Trop Dis. 2009;3(4):e410
pubmed: 19352421
J Immunol. 1989 Nov 15;143(10):3359-63
pubmed: 2809205
Invert Neurosci. 2012 Jun;12(1):37-41
pubmed: 22562659
Mol Biochem Parasitol. 2017 Jul;215:2-10
pubmed: 27899279
Infect Immun. 2003 May;71(5):2422-9
pubmed: 12704112
Mol Biol Evol. 2012 Nov;29(11):3345-58
pubmed: 22617951
PLoS Negl Trop Dis. 2016 Aug 16;10(8):e0004929
pubmed: 27529747
J Mol Biol. 1990 Oct 5;215(3):403-10
pubmed: 2231712
Evodevo. 2019 Mar 14;10:5
pubmed: 30911368
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20120-5
pubmed: 21041637
Methods Mol Biol. 2006;322:331-45
pubmed: 16739734

Auteurs

Paul M Airs (PM)

Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Kathy Vaccaro (K)

Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Kendra J Gallo (KJ)

Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Nathalie Dinguirard (N)

Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Zachary W Heimark (ZW)

Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Nicolas J Wheeler (NJ)

Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Jiaye He (J)

Morgridge Institute for Research, Madison, Wisconsin, United States of America.

Kurt R Weiss (KR)

Morgridge Institute for Research, Madison, Wisconsin, United States of America.

Nathan E Schroeder (NE)

Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America.
Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America.

Jan Huisken (J)

Morgridge Institute for Research, Madison, Wisconsin, United States of America.
Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America.

Mostafa Zamanian (M)

Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH