Angular and linear speed cells in the parahippocampal circuits.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
07 04 2022
Historique:
received: 31 01 2021
accepted: 08 03 2022
entrez: 8 4 2022
pubmed: 9 4 2022
medline: 12 4 2022
Statut: epublish

Résumé

An essential role of the hippocampal region is to integrate information to compute and update representations. How this transpires is highly debated. Many theories hinge on the integration of self-motion signals and the existence of continuous attractor networks (CAN). CAN models hypothesise that neurons coding for navigational correlates - such as position and direction - receive inputs from cells conjunctively coding for position, direction, and self-motion. As yet, very little data exist on such conjunctive coding in the hippocampal region. Here, we report neurons coding for angular and linear velocity, uniformly distributed across the medial entorhinal cortex (MEC), the presubiculum and the parasubiculum, except for MEC layer II. Self-motion neurons often conjunctively encoded position and/or direction, yet lacked a structured organisation. These results offer insights as to how linear/angular speed - derivative in time of position/direction - may allow the updating of spatial representations, possibly uncovering a generalised algorithm to update any representation.

Identifiants

pubmed: 35393433
doi: 10.1038/s41467-022-29583-z
pii: 10.1038/s41467-022-29583-z
pmc: PMC8991198
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1907

Informations de copyright

© 2022. The Author(s).

Références

Buzsáki, G. & Moser, E. I. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat. Neurosci. 16, 130 (2013).
pubmed: 23354386 pmcid: 4079500 doi: 10.1038/nn.3304
Lisman, J. et al. Viewpoints: how the hippocampus contributes to memory, navigation and cognition. Nat. Neurosci. 20, 1434–1447 (2017).
pubmed: 29073641 pmcid: 5943637 doi: 10.1038/nn.4661
Moser, E. I., Moser, M.-B. & McNaughton, B. L. Spatial representation in the hippocampal formation: a history. Nat. Neurosci. 20, 1448 (2017).
pubmed: 29073644 doi: 10.1038/nn.4653
Moser, M. B., Rowland, D. C. & Moser, E. I. Place cells, grid cells, and memory. Cold Spring Harb. Perspect. Biol. 7, a021808 (2015).
pubmed: 25646382 pmcid: 4315928 doi: 10.1101/cshperspect.a021808
Witter M. P., Amaral D. G. Hippocampal formation. In: The Rat Nervous System). Elsevier Academic Press (2004).
Boccara, C. N. et al. A three-plane architectonic atlas of the rat hippocampal region. Hippocampus 25, 838–857 (2015).
pubmed: 25533645 doi: 10.1002/hipo.22407
O’Keefe J., Nadel L. The Hippocampus as a Cognitive Map. Clarendon Press (1978).
Taube, J. S., Muller, R. U. & Ranck, J. B. Jr. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci.: Off. J. Soc. Neurosci. 10, 420–435 (1990).
doi: 10.1523/JNEUROSCI.10-02-00420.1990
Hafting, T., Fyhn, M., Molden, S., Moser, M. B. & Moser, E. I. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005).
pubmed: 15965463 doi: 10.1038/nature03721
Lever, C., Burton, S., Jeewajee, A., O’Keefe, J. & Burgess, N. Boundary vector cells in the subiculum of the hippocampal formation. J. Neurosci.: Off. J. Soc. Neurosci. 29, 9771–9777 (2009).
doi: 10.1523/JNEUROSCI.1319-09.2009
Solstad, T., Boccara, C. N., Kropff, E., Moser, M. B. & Moser, E. I. Representation of geometric borders in the entorhinal cortex. Science 322, 1865–1868 (2008).
pubmed: 19095945 doi: 10.1126/science.1166466
Campbell, M. G. et al. Principles governing the integration of landmark and self-motion cues in entorhinal cortical codes for navigation. Nat. Neurosci. 21, 1096–1106 (2018).
pubmed: 30038279 pmcid: 6205817 doi: 10.1038/s41593-018-0189-y
McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I. & Moser, M. B. Path integration and the neural basis of the ‘cognitive map’. Nat. Rev. Neurosci. 7, 663–678 (2006).
pubmed: 16858394 doi: 10.1038/nrn1932
McNaughton, B. L., Leonard, B. & Chen, L. Cortical-hippocampal interactions and cognitive mapping: A hypothesis based on reintegration of the parietal and inferotemporal pathways for visual processing. Psychobiology 17, 230–235 (1989).
doi: 10.1007/BF03337774
Zhang, K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci.: Off. J. Soc. Neurosci. 16, 2112–2126 (1996).
doi: 10.1523/JNEUROSCI.16-06-02112.1996
Hardcastle, K., Maheswaranathan, N., Ganguli, S. & Giocomo, L. M. A multiplexed, heterogeneous, and adaptive code for navigation in medial entorhinal cortex. Neuron 94, 375–387 (2017).
pubmed: 28392071 pmcid: 5498174 doi: 10.1016/j.neuron.2017.03.025
Kropff, E., Carmichael, J. E., Moser, M.-B. & Moser, E. I. Speed cells in the medial entorhinal cortex. Nature 523, 419–424 (2015).
pubmed: 26176924 doi: 10.1038/nature14622
Buzsaki, G. Theta oscillations in the hippocampus. Neuron 33, 325–340 (2002).
pubmed: 11832222 doi: 10.1016/S0896-6273(02)00586-X
McFarland, W. L., Teitelbaum, H. & Hedges, E. K. Relationship between hippocampal theta activity and running speed in the rat. J. Comp. Physiological Psychol. 88, 324–328 (1975).
doi: 10.1037/h0076177
Vanderwolf, C. H. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr. Clin. Neurophysiol. 26, 407–418 (1969).
pubmed: 4183562 doi: 10.1016/0013-4694(69)90092-3
Mallory, C. S. et al. Mouse entorhinal cortex encodes a diverse repertoire of self-motion signals. Nat. Commun. 12, 671 (2021).
pubmed: 33510164 pmcid: 7844029 doi: 10.1038/s41467-021-20936-8
Bassett, J. P. & Taube, J. S. Neural correlates for angular head velocity in the rat dorsal tegmental nucleus. J. Neurosci.: Off. J. Soc. Neurosci. 21, 5740–5751 (2001).
doi: 10.1523/JNEUROSCI.21-15-05740.2001
Stackman, R. W. & Taube, J. S. Firing properties of head direction cells in the rat anterior thalamic nucleus: dependence on vestibular input. J. Neurosci.: Off. J. Soc. Neurosci. 17, 4349–4358 (1997).
doi: 10.1523/JNEUROSCI.17-11-04349.1997
Stackman, R. W. & Taube, J. S. Firing properties of rat lateral mammillary single units: head direction, head pitch, and angular head velocity. J. Neurosci.: Off. J. Soc. Neurosci. 18, 9020–9037 (1998).
doi: 10.1523/JNEUROSCI.18-21-09020.1998
Taube, J. S. Head direction cells recorded in the anterior thalamic nuclei of freely moving rats. J. Neurosci.: Off. J. Soc. Neurosci. 15, 70–86 (1995).
doi: 10.1523/JNEUROSCI.15-01-00070.1995
Chen, L. L., Lin, L. H., Green, E. J., Barnes, C. A. & McNaughton, B. L. Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp. Brain Res 101, 8–23 (1994).
pubmed: 7843305 doi: 10.1007/BF00243212
Lozano, Y. R. et al. Retrosplenial and postsubicular head direction cells compared during visual landmark discrimination. Brain Neurosci. Adv. 1, 2398212817721859–2398212817721859 (2017).
pubmed: 30246155 pmcid: 6124005 doi: 10.1177/2398212817721859
Burak, Y. & Fiete, I. R. Accurate path integration in continuous attractor network models of grid cells. PLoS Comput Biol. 5, e1000291 (2009).
pubmed: 19229307 pmcid: 2632741 doi: 10.1371/journal.pcbi.1000291
Goodridge, J. P. & Touretzky, D. S. Modeling attractor deformation in the rodent head-direction system. J. Neurophysiol. 83, 3402–3410 (2000).
pubmed: 10848558 doi: 10.1152/jn.2000.83.6.3402
Sharp, P. E., Blair, H. T. & Brown, M. Neural network modeling of the hippocampal formation spatial signals and their possible role in navigation: a modular approach. Hippocampus 6, 720–734 (1996).
pubmed: 9034858 doi: 10.1002/(SICI)1098-1063(1996)6:6<720::AID-HIPO14>3.0.CO;2-2
Skaggs, W. E., Knierim, J. J., Kudrimoti, H. S. & McNaughton, B. L. A model of the neural basis of the rat’s sense of direction. Adv. Neural Inf. Process Syst. 7, 173–180 (1995).
pubmed: 11539168
Touretzky, D. S. & Redish, A. D. Theory of rodent navigation based on interacting representations of space. Hippocampus 6, 247–270 (1996).
pubmed: 8841825 doi: 10.1002/(SICI)1098-1063(1996)6:3<247::AID-HIPO4>3.0.CO;2-K
Stringer, S. M., Trappenberg, T. P., Rolls, E. T. & de Araujo, I. E. Self-organizing continuous attractor networks and path integration: one-dimensional models of head direction cells. Network 13, 217–242 (2002).
pubmed: 12061421 doi: 10.1080/net.13.2.217.242
Kim, S. S., Rouault, H., Druckmann, S. & Jayaraman, V. Ring attractor dynamics in the Drosophila central brain. Science 356, 849 (2017).
pubmed: 28473639 doi: 10.1126/science.aal4835
Turner-Evans, D. et al. Angular velocity integration in a fly heading circuit. eLife 6, e23496 (2017).
pubmed: 28530551 pmcid: 5440168 doi: 10.7554/eLife.23496
Boccara, C. N. et al. Grid cells in pre- and parasubiculum. Nat. Neurosci. 13, 987–994 (2010).
pubmed: 20657591 doi: 10.1038/nn.2602
Hinman, J. R., Brandon, M. P., Climer, J. R., Chapman, G. W. & Hasselmo, M. E. Multiple running speed signals in medial entorhinal cortex. Neuron 91, 666–679 (2016).
pubmed: 27427460 pmcid: 4976037 doi: 10.1016/j.neuron.2016.06.027
Sargolini, F. et al. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312, 758–762 (2006).
pubmed: 16675704 doi: 10.1126/science.1125572
Constantinescu, A. O., O’Reilly, J. X. & Behrens, T. E. J. Organizing conceptual knowledge in humans with a gridlike code. Science 352, 1464–1468 (2016).
pubmed: 27313047 pmcid: 5248972 doi: 10.1126/science.aaf0941
Aronov, D., Nevers, R. & Tank, D. W. Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit. Nature 543, 719–722 (2017).
pubmed: 28358077 pmcid: 5492514 doi: 10.1038/nature21692
Mehlman, M. L., Winter, S. S., Valerio, S. & Taube, J. S. Functional and anatomical relationships between the medial precentral cortex, dorsal striatum, and head direction cell circuitry. I. Recording studies. J. Neurophysiol. 121, 350–370 (2018).
pubmed: 30427767 pmcid: 6397396 doi: 10.1152/jn.00143.2018
Taube, J. S. & Bassett, J. P. Persistent neural activity in head direction cells. Cereb. Cortex 13, 1162–1172 (2003).
pubmed: 14576208 doi: 10.1093/cercor/bhg102
Mara, S. M., Rolls, E. T., Berthoz, A. & Kesner, R. P. Neurons responding to whole-body motion in the primate hippocampus. J. Neurosci. 14, 6511 (1994).
doi: 10.1523/JNEUROSCI.14-11-06511.1994
Preston-Ferrer, P., Coletta, S., Frey, M. & Burgalossi, A. Anatomical organization of presubicular head-direction circuits. eLife 5, e14592 (2016).
pubmed: 27282390 pmcid: 4927294 doi: 10.7554/eLife.14592
Van Essen, D. C. & Maunsell, J. H. R. Hierarchical organization and functional streams in the visual cortex. Trends Neurosci. 6, 370–375 (1983).
doi: 10.1016/0166-2236(83)90167-4
Burgess, N., Barry, C. & O’Keefe, J. An oscillatory interference model of grid cell firing. Hippocampus 17, 801–812 (2007).
pubmed: 17598147 pmcid: 2678278 doi: 10.1002/hipo.20327
Fuhs, M. C. & Touretzky, D. S. A spin glass model of path integration in rat medial entorhinal cortex. J. Neurosci.: Off. J. Soc. Neurosci. 26, 4266–4276 (2006).
doi: 10.1523/JNEUROSCI.4353-05.2006
Hasselmo, M. E., Giocomo, L. M. & Zilli, E. A. Grid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons. Hippocampus 17, 1252–1271 (2007).
pubmed: 17924530 pmcid: 2408670 doi: 10.1002/hipo.20374
Kropff, E. & Treves, A. The emergence of grid cells: Intelligent design or just adaptation? Hippocampus 18, 1256–1269 (2008).
pubmed: 19021261 doi: 10.1002/hipo.20520
Miao, C., Cao, Q., Moser, M. B. & Moser, E. I. Parvalbumin and somatostatin interneurons control different space-coding networks in the medial entorhinal cortex. Cell 171, 507–521 (2017).
pubmed: 28965758 pmcid: 5651217 doi: 10.1016/j.cell.2017.08.050
Ye, J., Witter, M. P., Moser, M.-B. & Moser, E. I. Entorhinal fast-spiking speed cells project to the hippocampus. Proc. Natl Acad. Sci. 115, E1627 (2018).
pubmed: 29386397 pmcid: 5816210 doi: 10.1073/pnas.1720855115
Winter Shawn, S., Mehlman Max, L., Clark Benjamin, J. & Taube Jeffrey, S. Passive transport disrupts grid signals in the parahippocampal cortex. Curr. Biol. 25, 2493–2502 (2015).
pubmed: 26387719 pmcid: 4596791 doi: 10.1016/j.cub.2015.08.034
Carvalho M. M., et al. A brainstem locomotor circuit drives the activity of speed cells in the medial entorhinal cortex. Cell Reports 32, 108123 (2020).
Calton, J. L. & Taube, J. S. Degradation of head direction cell activity during inverted locomotion. J. Neurosci.: Off. J. Soc. Neurosci. 25, 2420–2428 (2005).
doi: 10.1523/JNEUROSCI.3511-04.2005
Blair, H. T., Cho, J. & Sharp, P. E. The anterior thalamic head-direction signal is abolished by bilateral but not unilateral lesions of the lateral mammillary nucleus. J. Neurosci.: Off. J. Soc. Neurosci. 19, 6673–6683 (1999).
doi: 10.1523/JNEUROSCI.19-15-06673.1999
Bush, D. & Burgess, N. A hybrid oscillatory interference/continuous attractor network model of grid cell firing. J. Neurosci. 34, 5065 (2014).
pubmed: 24695724 pmcid: 3972729 doi: 10.1523/JNEUROSCI.4017-13.2014
Gardner R. J., et al. Toroidal topology of population activity in grid cells. Nature 602, 123–128. (2022).
Urdapilleta, E., Si, B. & Treves, A. Selforganization of modular activity of grid cells. Hippocampus 27, 1204–1213 (2017).
pubmed: 28768062 pmcid: 5697658 doi: 10.1002/hipo.22765
Ledergerber, D. et al. Task-dependent mixed selectivity in the subiculum. Cell Rep. 35, 109175 (2021).
pubmed: 34038726 pmcid: 8170370 doi: 10.1016/j.celrep.2021.109175
Rowland D. C., et al. Functional properties of stellate cells in medial entorhinal cortex layer II. Elife 7, e36664 (2018).
Muir, G. M. & Bilkey, D. K. Theta- and movement velocity-related firing of hippocampal neurons is disrupted by lesions centered on the perirhinal cortex. Hippocampus 13, 93–108 (2003).
pubmed: 12625461 doi: 10.1002/hipo.10052
Cooper, B. G. & Mizumori, S. J. Temporary inactivation of the retrosplenial cortex causes a transient reorganization of spatial coding in the hippocampus. J. Neurosci.: Off. J. Soc. Neurosci. 21, 3986–4001 (2001).
doi: 10.1523/JNEUROSCI.21-11-03986.2001
Rochefort, C. et al. Cerebellum shapes hippocampal spatial code. Science 334, 385–389 (2011).
pubmed: 22021859 doi: 10.1126/science.1207403
van Groen, T. & Wyss, J. M. The postsubicular cortex in the rat: characterization of the fourth region of the subicular cortex and its connections. Brain Res. 529, 165–177 (1990).
pubmed: 1704281 doi: 10.1016/0006-8993(90)90824-U
Burwell, R. D. & Amaral, D. G. Perirhinal and postrhinal cortices of the rat: interconnectivity and connections with the entorhinal cortex. J. Comp. Neurol. 391, 293–321 (1998).
pubmed: 9492202 doi: 10.1002/(SICI)1096-9861(19980216)391:3<293::AID-CNE2>3.0.CO;2-X
van Strien, N. M., Cappaert, N. L. & Witter, M. P. The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network. Nat. Rev. Neurosci. 10, 272–282 (2009).
pubmed: 19300446 doi: 10.1038/nrn2614
Bohne, P., Schwarz, M. K., Herlitze, S. & Mark, M. D. A new projection from the deep cerebellar nuclei to the hippocampus via the ventrolateral and laterodorsal thalamus in mice. Front. Neural Circuits 13, 51 (2019).
pubmed: 31447652 pmcid: 6695568 doi: 10.3389/fncir.2019.00051
Watson, T. C. et al. Anatomical and physiological foundations of cerebello-hippocampal interaction. eLife 8, e41896 (2019).
pubmed: 31205000 pmcid: 6579515 doi: 10.7554/eLife.41896
Hafting, T., Fyhn, M., Bonnevie, T., Moser, M.-B. & Moser, E. I. Hippocampus-independent phase precession in entorhinal grid cells. Nature 453, 1248–1252 (2008).
pubmed: 18480753 doi: 10.1038/nature06957
O’Keefe, J. & Recce, M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993).
pubmed: 8353611 doi: 10.1002/hipo.450030307
Skaggs, W. E., McNaughton, B. L., Wilson, M. A. & Barnes, C. A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996).
pubmed: 8797016 doi: 10.1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO;2-K
Barry, C., Heys, J. G. & Hasselmo, M. E. Possible role of acetylcholine in regulating spatial novelty effects on theta rhythm and grid cells. Front. Neural Circuits 6, 5 (2012).
pubmed: 22363266 pmcid: 3282552 doi: 10.3389/fncir.2012.00005
Carpenter, F., Burgess, N. & Barry, C. Modulating medial septal cholinergic activity reduces medial entorhinal theta frequency without affecting speed or grid coding. Sci. Rep. 7, 14573 (2017).
pubmed: 29109512 pmcid: 5673944 doi: 10.1038/s41598-017-15100-6
Brandon, M. P. et al. Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science 332, 595–599 (2011).
pubmed: 21527714 pmcid: 3252766 doi: 10.1126/science.1201652
Koenig, J., Linder, A. N., Leutgeb, J. K. & Leutgeb, S. The spatial periodicity of grid cells is not sustained during reduced theta oscillations. Science 332, 592–595 (2011).
pubmed: 21527713 doi: 10.1126/science.1201685
Yartsev, M. M., Witter, M. P. & Ulanovsky, N. Grid cells without theta oscillations in the entorhinal cortex of bats. Nature 479, 103–107 (2011).
pubmed: 22051680 doi: 10.1038/nature10583
Eliav, T. et al. Nonoscillatory phase coding and synchronization in the bat hippocampal formation. Cell 175, 1119–1130 (2018).
pubmed: 30318145 doi: 10.1016/j.cell.2018.09.017
Kropff, E., Carmichael, J. E., Moser, E. I. & Moser, M. B. Frequency of theta rhythm is controlled by acceleration, but not speed, in running rats. Neuron 109, 1029–1039 (2021).
pubmed: 33567253 pmcid: 7980093 doi: 10.1016/j.neuron.2021.01.017
Lepperød M. E., et al. Optogenetic pacing of medial septum parvalbumin-positive cells disrupts temporal but not spatial firing in grid cells. Sci Adv 7, eabd5684 (2021).
Boccara C. N., Nardin M., Stella F., O’Neill J., Csicsvari J. The entorhinal cognitive map is attracted to goals. Science 363, 1443–1447 (2019).

Auteurs

Davide Spalla (D)

Sissa, Via Bonomea 265, 34136, Trieste, Italy.

Alessandro Treves (A)

Sissa, Via Bonomea 265, 34136, Trieste, Italy.

Charlotte N Boccara (CN)

University of Oslo, Faculty of Medicine, IMB, Sognsvannsveien 9 Domus Medica, 0372, Oslo, Norway. charlotte.boccara@medisin.uio.no.

Articles similaires

alpha-Synuclein Humans Animals Mice Lewy Body Disease
Animals Optogenetics Visual Cortex Neurons Mice
West Nile Fever Animals West Nile virus Humans Enteric Nervous System
Animals Huntington Disease Mitochondria Neurons Mice

Classifications MeSH