Angular and linear speed cells in the parahippocampal circuits.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
07 04 2022
07 04 2022
Historique:
received:
31
01
2021
accepted:
08
03
2022
entrez:
8
4
2022
pubmed:
9
4
2022
medline:
12
4
2022
Statut:
epublish
Résumé
An essential role of the hippocampal region is to integrate information to compute and update representations. How this transpires is highly debated. Many theories hinge on the integration of self-motion signals and the existence of continuous attractor networks (CAN). CAN models hypothesise that neurons coding for navigational correlates - such as position and direction - receive inputs from cells conjunctively coding for position, direction, and self-motion. As yet, very little data exist on such conjunctive coding in the hippocampal region. Here, we report neurons coding for angular and linear velocity, uniformly distributed across the medial entorhinal cortex (MEC), the presubiculum and the parasubiculum, except for MEC layer II. Self-motion neurons often conjunctively encoded position and/or direction, yet lacked a structured organisation. These results offer insights as to how linear/angular speed - derivative in time of position/direction - may allow the updating of spatial representations, possibly uncovering a generalised algorithm to update any representation.
Identifiants
pubmed: 35393433
doi: 10.1038/s41467-022-29583-z
pii: 10.1038/s41467-022-29583-z
pmc: PMC8991198
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1907Informations de copyright
© 2022. The Author(s).
Références
Buzsáki, G. & Moser, E. I. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat. Neurosci. 16, 130 (2013).
pubmed: 23354386
pmcid: 4079500
doi: 10.1038/nn.3304
Lisman, J. et al. Viewpoints: how the hippocampus contributes to memory, navigation and cognition. Nat. Neurosci. 20, 1434–1447 (2017).
pubmed: 29073641
pmcid: 5943637
doi: 10.1038/nn.4661
Moser, E. I., Moser, M.-B. & McNaughton, B. L. Spatial representation in the hippocampal formation: a history. Nat. Neurosci. 20, 1448 (2017).
pubmed: 29073644
doi: 10.1038/nn.4653
Moser, M. B., Rowland, D. C. & Moser, E. I. Place cells, grid cells, and memory. Cold Spring Harb. Perspect. Biol. 7, a021808 (2015).
pubmed: 25646382
pmcid: 4315928
doi: 10.1101/cshperspect.a021808
Witter M. P., Amaral D. G. Hippocampal formation. In: The Rat Nervous System). Elsevier Academic Press (2004).
Boccara, C. N. et al. A three-plane architectonic atlas of the rat hippocampal region. Hippocampus 25, 838–857 (2015).
pubmed: 25533645
doi: 10.1002/hipo.22407
O’Keefe J., Nadel L. The Hippocampus as a Cognitive Map. Clarendon Press (1978).
Taube, J. S., Muller, R. U. & Ranck, J. B. Jr. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci.: Off. J. Soc. Neurosci. 10, 420–435 (1990).
doi: 10.1523/JNEUROSCI.10-02-00420.1990
Hafting, T., Fyhn, M., Molden, S., Moser, M. B. & Moser, E. I. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005).
pubmed: 15965463
doi: 10.1038/nature03721
Lever, C., Burton, S., Jeewajee, A., O’Keefe, J. & Burgess, N. Boundary vector cells in the subiculum of the hippocampal formation. J. Neurosci.: Off. J. Soc. Neurosci. 29, 9771–9777 (2009).
doi: 10.1523/JNEUROSCI.1319-09.2009
Solstad, T., Boccara, C. N., Kropff, E., Moser, M. B. & Moser, E. I. Representation of geometric borders in the entorhinal cortex. Science 322, 1865–1868 (2008).
pubmed: 19095945
doi: 10.1126/science.1166466
Campbell, M. G. et al. Principles governing the integration of landmark and self-motion cues in entorhinal cortical codes for navigation. Nat. Neurosci. 21, 1096–1106 (2018).
pubmed: 30038279
pmcid: 6205817
doi: 10.1038/s41593-018-0189-y
McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I. & Moser, M. B. Path integration and the neural basis of the ‘cognitive map’. Nat. Rev. Neurosci. 7, 663–678 (2006).
pubmed: 16858394
doi: 10.1038/nrn1932
McNaughton, B. L., Leonard, B. & Chen, L. Cortical-hippocampal interactions and cognitive mapping: A hypothesis based on reintegration of the parietal and inferotemporal pathways for visual processing. Psychobiology 17, 230–235 (1989).
doi: 10.1007/BF03337774
Zhang, K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci.: Off. J. Soc. Neurosci. 16, 2112–2126 (1996).
doi: 10.1523/JNEUROSCI.16-06-02112.1996
Hardcastle, K., Maheswaranathan, N., Ganguli, S. & Giocomo, L. M. A multiplexed, heterogeneous, and adaptive code for navigation in medial entorhinal cortex. Neuron 94, 375–387 (2017).
pubmed: 28392071
pmcid: 5498174
doi: 10.1016/j.neuron.2017.03.025
Kropff, E., Carmichael, J. E., Moser, M.-B. & Moser, E. I. Speed cells in the medial entorhinal cortex. Nature 523, 419–424 (2015).
pubmed: 26176924
doi: 10.1038/nature14622
Buzsaki, G. Theta oscillations in the hippocampus. Neuron 33, 325–340 (2002).
pubmed: 11832222
doi: 10.1016/S0896-6273(02)00586-X
McFarland, W. L., Teitelbaum, H. & Hedges, E. K. Relationship between hippocampal theta activity and running speed in the rat. J. Comp. Physiological Psychol. 88, 324–328 (1975).
doi: 10.1037/h0076177
Vanderwolf, C. H. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr. Clin. Neurophysiol. 26, 407–418 (1969).
pubmed: 4183562
doi: 10.1016/0013-4694(69)90092-3
Mallory, C. S. et al. Mouse entorhinal cortex encodes a diverse repertoire of self-motion signals. Nat. Commun. 12, 671 (2021).
pubmed: 33510164
pmcid: 7844029
doi: 10.1038/s41467-021-20936-8
Bassett, J. P. & Taube, J. S. Neural correlates for angular head velocity in the rat dorsal tegmental nucleus. J. Neurosci.: Off. J. Soc. Neurosci. 21, 5740–5751 (2001).
doi: 10.1523/JNEUROSCI.21-15-05740.2001
Stackman, R. W. & Taube, J. S. Firing properties of head direction cells in the rat anterior thalamic nucleus: dependence on vestibular input. J. Neurosci.: Off. J. Soc. Neurosci. 17, 4349–4358 (1997).
doi: 10.1523/JNEUROSCI.17-11-04349.1997
Stackman, R. W. & Taube, J. S. Firing properties of rat lateral mammillary single units: head direction, head pitch, and angular head velocity. J. Neurosci.: Off. J. Soc. Neurosci. 18, 9020–9037 (1998).
doi: 10.1523/JNEUROSCI.18-21-09020.1998
Taube, J. S. Head direction cells recorded in the anterior thalamic nuclei of freely moving rats. J. Neurosci.: Off. J. Soc. Neurosci. 15, 70–86 (1995).
doi: 10.1523/JNEUROSCI.15-01-00070.1995
Chen, L. L., Lin, L. H., Green, E. J., Barnes, C. A. & McNaughton, B. L. Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp. Brain Res 101, 8–23 (1994).
pubmed: 7843305
doi: 10.1007/BF00243212
Lozano, Y. R. et al. Retrosplenial and postsubicular head direction cells compared during visual landmark discrimination. Brain Neurosci. Adv. 1, 2398212817721859–2398212817721859 (2017).
pubmed: 30246155
pmcid: 6124005
doi: 10.1177/2398212817721859
Burak, Y. & Fiete, I. R. Accurate path integration in continuous attractor network models of grid cells. PLoS Comput Biol. 5, e1000291 (2009).
pubmed: 19229307
pmcid: 2632741
doi: 10.1371/journal.pcbi.1000291
Goodridge, J. P. & Touretzky, D. S. Modeling attractor deformation in the rodent head-direction system. J. Neurophysiol. 83, 3402–3410 (2000).
pubmed: 10848558
doi: 10.1152/jn.2000.83.6.3402
Sharp, P. E., Blair, H. T. & Brown, M. Neural network modeling of the hippocampal formation spatial signals and their possible role in navigation: a modular approach. Hippocampus 6, 720–734 (1996).
pubmed: 9034858
doi: 10.1002/(SICI)1098-1063(1996)6:6<720::AID-HIPO14>3.0.CO;2-2
Skaggs, W. E., Knierim, J. J., Kudrimoti, H. S. & McNaughton, B. L. A model of the neural basis of the rat’s sense of direction. Adv. Neural Inf. Process Syst. 7, 173–180 (1995).
pubmed: 11539168
Touretzky, D. S. & Redish, A. D. Theory of rodent navigation based on interacting representations of space. Hippocampus 6, 247–270 (1996).
pubmed: 8841825
doi: 10.1002/(SICI)1098-1063(1996)6:3<247::AID-HIPO4>3.0.CO;2-K
Stringer, S. M., Trappenberg, T. P., Rolls, E. T. & de Araujo, I. E. Self-organizing continuous attractor networks and path integration: one-dimensional models of head direction cells. Network 13, 217–242 (2002).
pubmed: 12061421
doi: 10.1080/net.13.2.217.242
Kim, S. S., Rouault, H., Druckmann, S. & Jayaraman, V. Ring attractor dynamics in the Drosophila central brain. Science 356, 849 (2017).
pubmed: 28473639
doi: 10.1126/science.aal4835
Turner-Evans, D. et al. Angular velocity integration in a fly heading circuit. eLife 6, e23496 (2017).
pubmed: 28530551
pmcid: 5440168
doi: 10.7554/eLife.23496
Boccara, C. N. et al. Grid cells in pre- and parasubiculum. Nat. Neurosci. 13, 987–994 (2010).
pubmed: 20657591
doi: 10.1038/nn.2602
Hinman, J. R., Brandon, M. P., Climer, J. R., Chapman, G. W. & Hasselmo, M. E. Multiple running speed signals in medial entorhinal cortex. Neuron 91, 666–679 (2016).
pubmed: 27427460
pmcid: 4976037
doi: 10.1016/j.neuron.2016.06.027
Sargolini, F. et al. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312, 758–762 (2006).
pubmed: 16675704
doi: 10.1126/science.1125572
Constantinescu, A. O., O’Reilly, J. X. & Behrens, T. E. J. Organizing conceptual knowledge in humans with a gridlike code. Science 352, 1464–1468 (2016).
pubmed: 27313047
pmcid: 5248972
doi: 10.1126/science.aaf0941
Aronov, D., Nevers, R. & Tank, D. W. Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit. Nature 543, 719–722 (2017).
pubmed: 28358077
pmcid: 5492514
doi: 10.1038/nature21692
Mehlman, M. L., Winter, S. S., Valerio, S. & Taube, J. S. Functional and anatomical relationships between the medial precentral cortex, dorsal striatum, and head direction cell circuitry. I. Recording studies. J. Neurophysiol. 121, 350–370 (2018).
pubmed: 30427767
pmcid: 6397396
doi: 10.1152/jn.00143.2018
Taube, J. S. & Bassett, J. P. Persistent neural activity in head direction cells. Cereb. Cortex 13, 1162–1172 (2003).
pubmed: 14576208
doi: 10.1093/cercor/bhg102
Mara, S. M., Rolls, E. T., Berthoz, A. & Kesner, R. P. Neurons responding to whole-body motion in the primate hippocampus. J. Neurosci. 14, 6511 (1994).
doi: 10.1523/JNEUROSCI.14-11-06511.1994
Preston-Ferrer, P., Coletta, S., Frey, M. & Burgalossi, A. Anatomical organization of presubicular head-direction circuits. eLife 5, e14592 (2016).
pubmed: 27282390
pmcid: 4927294
doi: 10.7554/eLife.14592
Van Essen, D. C. & Maunsell, J. H. R. Hierarchical organization and functional streams in the visual cortex. Trends Neurosci. 6, 370–375 (1983).
doi: 10.1016/0166-2236(83)90167-4
Burgess, N., Barry, C. & O’Keefe, J. An oscillatory interference model of grid cell firing. Hippocampus 17, 801–812 (2007).
pubmed: 17598147
pmcid: 2678278
doi: 10.1002/hipo.20327
Fuhs, M. C. & Touretzky, D. S. A spin glass model of path integration in rat medial entorhinal cortex. J. Neurosci.: Off. J. Soc. Neurosci. 26, 4266–4276 (2006).
doi: 10.1523/JNEUROSCI.4353-05.2006
Hasselmo, M. E., Giocomo, L. M. & Zilli, E. A. Grid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons. Hippocampus 17, 1252–1271 (2007).
pubmed: 17924530
pmcid: 2408670
doi: 10.1002/hipo.20374
Kropff, E. & Treves, A. The emergence of grid cells: Intelligent design or just adaptation? Hippocampus 18, 1256–1269 (2008).
pubmed: 19021261
doi: 10.1002/hipo.20520
Miao, C., Cao, Q., Moser, M. B. & Moser, E. I. Parvalbumin and somatostatin interneurons control different space-coding networks in the medial entorhinal cortex. Cell 171, 507–521 (2017).
pubmed: 28965758
pmcid: 5651217
doi: 10.1016/j.cell.2017.08.050
Ye, J., Witter, M. P., Moser, M.-B. & Moser, E. I. Entorhinal fast-spiking speed cells project to the hippocampus. Proc. Natl Acad. Sci. 115, E1627 (2018).
pubmed: 29386397
pmcid: 5816210
doi: 10.1073/pnas.1720855115
Winter Shawn, S., Mehlman Max, L., Clark Benjamin, J. & Taube Jeffrey, S. Passive transport disrupts grid signals in the parahippocampal cortex. Curr. Biol. 25, 2493–2502 (2015).
pubmed: 26387719
pmcid: 4596791
doi: 10.1016/j.cub.2015.08.034
Carvalho M. M., et al. A brainstem locomotor circuit drives the activity of speed cells in the medial entorhinal cortex. Cell Reports 32, 108123 (2020).
Calton, J. L. & Taube, J. S. Degradation of head direction cell activity during inverted locomotion. J. Neurosci.: Off. J. Soc. Neurosci. 25, 2420–2428 (2005).
doi: 10.1523/JNEUROSCI.3511-04.2005
Blair, H. T., Cho, J. & Sharp, P. E. The anterior thalamic head-direction signal is abolished by bilateral but not unilateral lesions of the lateral mammillary nucleus. J. Neurosci.: Off. J. Soc. Neurosci. 19, 6673–6683 (1999).
doi: 10.1523/JNEUROSCI.19-15-06673.1999
Bush, D. & Burgess, N. A hybrid oscillatory interference/continuous attractor network model of grid cell firing. J. Neurosci. 34, 5065 (2014).
pubmed: 24695724
pmcid: 3972729
doi: 10.1523/JNEUROSCI.4017-13.2014
Gardner R. J., et al. Toroidal topology of population activity in grid cells. Nature 602, 123–128. (2022).
Urdapilleta, E., Si, B. & Treves, A. Selforganization of modular activity of grid cells. Hippocampus 27, 1204–1213 (2017).
pubmed: 28768062
pmcid: 5697658
doi: 10.1002/hipo.22765
Ledergerber, D. et al. Task-dependent mixed selectivity in the subiculum. Cell Rep. 35, 109175 (2021).
pubmed: 34038726
pmcid: 8170370
doi: 10.1016/j.celrep.2021.109175
Rowland D. C., et al. Functional properties of stellate cells in medial entorhinal cortex layer II. Elife 7, e36664 (2018).
Muir, G. M. & Bilkey, D. K. Theta- and movement velocity-related firing of hippocampal neurons is disrupted by lesions centered on the perirhinal cortex. Hippocampus 13, 93–108 (2003).
pubmed: 12625461
doi: 10.1002/hipo.10052
Cooper, B. G. & Mizumori, S. J. Temporary inactivation of the retrosplenial cortex causes a transient reorganization of spatial coding in the hippocampus. J. Neurosci.: Off. J. Soc. Neurosci. 21, 3986–4001 (2001).
doi: 10.1523/JNEUROSCI.21-11-03986.2001
Rochefort, C. et al. Cerebellum shapes hippocampal spatial code. Science 334, 385–389 (2011).
pubmed: 22021859
doi: 10.1126/science.1207403
van Groen, T. & Wyss, J. M. The postsubicular cortex in the rat: characterization of the fourth region of the subicular cortex and its connections. Brain Res. 529, 165–177 (1990).
pubmed: 1704281
doi: 10.1016/0006-8993(90)90824-U
Burwell, R. D. & Amaral, D. G. Perirhinal and postrhinal cortices of the rat: interconnectivity and connections with the entorhinal cortex. J. Comp. Neurol. 391, 293–321 (1998).
pubmed: 9492202
doi: 10.1002/(SICI)1096-9861(19980216)391:3<293::AID-CNE2>3.0.CO;2-X
van Strien, N. M., Cappaert, N. L. & Witter, M. P. The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network. Nat. Rev. Neurosci. 10, 272–282 (2009).
pubmed: 19300446
doi: 10.1038/nrn2614
Bohne, P., Schwarz, M. K., Herlitze, S. & Mark, M. D. A new projection from the deep cerebellar nuclei to the hippocampus via the ventrolateral and laterodorsal thalamus in mice. Front. Neural Circuits 13, 51 (2019).
pubmed: 31447652
pmcid: 6695568
doi: 10.3389/fncir.2019.00051
Watson, T. C. et al. Anatomical and physiological foundations of cerebello-hippocampal interaction. eLife 8, e41896 (2019).
pubmed: 31205000
pmcid: 6579515
doi: 10.7554/eLife.41896
Hafting, T., Fyhn, M., Bonnevie, T., Moser, M.-B. & Moser, E. I. Hippocampus-independent phase precession in entorhinal grid cells. Nature 453, 1248–1252 (2008).
pubmed: 18480753
doi: 10.1038/nature06957
O’Keefe, J. & Recce, M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993).
pubmed: 8353611
doi: 10.1002/hipo.450030307
Skaggs, W. E., McNaughton, B. L., Wilson, M. A. & Barnes, C. A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996).
pubmed: 8797016
doi: 10.1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO;2-K
Barry, C., Heys, J. G. & Hasselmo, M. E. Possible role of acetylcholine in regulating spatial novelty effects on theta rhythm and grid cells. Front. Neural Circuits 6, 5 (2012).
pubmed: 22363266
pmcid: 3282552
doi: 10.3389/fncir.2012.00005
Carpenter, F., Burgess, N. & Barry, C. Modulating medial septal cholinergic activity reduces medial entorhinal theta frequency without affecting speed or grid coding. Sci. Rep. 7, 14573 (2017).
pubmed: 29109512
pmcid: 5673944
doi: 10.1038/s41598-017-15100-6
Brandon, M. P. et al. Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science 332, 595–599 (2011).
pubmed: 21527714
pmcid: 3252766
doi: 10.1126/science.1201652
Koenig, J., Linder, A. N., Leutgeb, J. K. & Leutgeb, S. The spatial periodicity of grid cells is not sustained during reduced theta oscillations. Science 332, 592–595 (2011).
pubmed: 21527713
doi: 10.1126/science.1201685
Yartsev, M. M., Witter, M. P. & Ulanovsky, N. Grid cells without theta oscillations in the entorhinal cortex of bats. Nature 479, 103–107 (2011).
pubmed: 22051680
doi: 10.1038/nature10583
Eliav, T. et al. Nonoscillatory phase coding and synchronization in the bat hippocampal formation. Cell 175, 1119–1130 (2018).
pubmed: 30318145
doi: 10.1016/j.cell.2018.09.017
Kropff, E., Carmichael, J. E., Moser, E. I. & Moser, M. B. Frequency of theta rhythm is controlled by acceleration, but not speed, in running rats. Neuron 109, 1029–1039 (2021).
pubmed: 33567253
pmcid: 7980093
doi: 10.1016/j.neuron.2021.01.017
Lepperød M. E., et al. Optogenetic pacing of medial septum parvalbumin-positive cells disrupts temporal but not spatial firing in grid cells. Sci Adv 7, eabd5684 (2021).
Boccara C. N., Nardin M., Stella F., O’Neill J., Csicsvari J. The entorhinal cognitive map is attracted to goals. Science 363, 1443–1447 (2019).