Common variants contribute to intrinsic human brain functional networks.


Journal

Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904

Informations de publication

Date de publication:
04 2022
Historique:
received: 21 12 2020
accepted: 28 02 2022
pubmed: 9 4 2022
medline: 15 4 2022
entrez: 8 4 2022
Statut: ppublish

Résumé

The human brain forms functional networks of correlated activity, which have been linked with both cognitive and clinical outcomes. However, the genetic variants affecting brain function are largely unknown. Here, we used resting-state functional magnetic resonance images from 47,276 individuals to discover and validate common genetic variants influencing intrinsic brain activity. We identified 45 new genetic regions associated with brain functional signatures (P < 2.8 × 10

Identifiants

pubmed: 35393594
doi: 10.1038/s41588-022-01039-6
pii: 10.1038/s41588-022-01039-6
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

508-517

Subventions

Organisme : NIMH NIH HHS
ID : RC2 MH089924
Pays : United States
Organisme : NIMH NIH HHS
ID : U54 MH091657
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH116527
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041174
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041156
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041093
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041106
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041148
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041089
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041134
Pays : United States
Organisme : NIDA NIH HHS
ID : U24 DA041147
Pays : United States
Organisme : NIMH NIH HHS
ID : RC2 MH089983
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041048
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041022
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041025
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041120
Pays : United States
Organisme : NIDA NIH HHS
ID : U24 DA041123
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041028
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041117
Pays : United States

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Petersen, S. E. & Sporns, O. Brain networks and cognitive architectures. Neuron 88, 207–219 (2015).
pubmed: 26447582 pmcid: 4598639 doi: 10.1016/j.neuron.2015.09.027
van den Heuvel, M. P. & Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 17, 683–696 (2013).
pubmed: 24231140 doi: 10.1016/j.tics.2013.09.012
Lv, H. et al. Resting-state functional MRI: everything that nonexperts have always wanted to know. Am. J. Neuroradiol. 39, 1390–1399 (2018).
pubmed: 29348136 pmcid: 6051935 doi: 10.3174/ajnr.A5452
Alfaro-Almagro, F. et al. Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank. NeuroImage 166, 400–424 (2018).
pubmed: 29079522 doi: 10.1016/j.neuroimage.2017.10.034
Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).
pubmed: 26457551 pmcid: 5008686 doi: 10.1038/nn.4135
Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl Acad. Sci. USA 106, 13040–13045 (2009).
pubmed: 19620724 pmcid: 2722273 doi: 10.1073/pnas.0905267106
Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).
pubmed: 21653723 doi: 10.1152/jn.00338.2011
Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506 (2011).
pubmed: 21908230 doi: 10.1016/j.tics.2011.08.003
Menon, V. The triple network model, insight, and large-scale brain organization in autism. Biol. Psychiatry 84, 236–238 (2018).
pubmed: 30071947 pmcid: 6345251 doi: 10.1016/j.biopsych.2018.06.012
Badhwar, A. et al. Resting-state network dysfunction in Alzheimer’s disease: a systematic review and meta-analysis. Alzheimers Dement. (Amst). 8, 73–85 (2017).
pubmed: 28560308 pmcid: 5436069 doi: 10.1016/j.dadm.2017.03.007
Wolters, A. F. et al. Resting-state fMRI in Parkinson’s disease patients with cognitive impairment: a meta-analysis. Parkinsonism Relat. Disord. 62, 16–27 (2019).
pubmed: 30580907 doi: 10.1016/j.parkreldis.2018.12.016
Mulders, P. C., van Eijndhoven, P. F., Schene, A. H., Beckmann, C. F. & Tendolkar, I. Resting-state functional connectivity in major depressive disorder: a review. Neurosci. Biobehav. Rev. 56, 330–344 (2015).
pubmed: 26234819 doi: 10.1016/j.neubiorev.2015.07.014
Foo, H. et al. Genetic influence on ageing-related changes in resting-state brain functional networks in healthy adults: a systematic review. Neurosci. Biobehav. Rev. 113, 98–110 (2020).
pubmed: 32169413 doi: 10.1016/j.neubiorev.2020.03.011
Glahn, D. et al. Genetic control over the resting brain. Proc. Natl Acad. Sci. USA 107, 1223–1228 (2010).
pubmed: 20133824 pmcid: 2824276 doi: 10.1073/pnas.0909969107
Elliott, M. L. et al. General functional connectivity: shared features of resting-state and task fMRI drive reliable and heritable individual differences in functional brain networks. NeuroImage 189, 516–532 (2019).
pubmed: 30708106 doi: 10.1016/j.neuroimage.2019.01.068
Ge, T., Holmes, A. J., Buckner, R. L., Smoller, J. W. & Sabuncu, M. R. Heritability analysis with repeat measurements and its application to resting-state functional connectivity. Proc. Natl Acad. Sci. USA 114, 5521–5526 (2017).
pubmed: 28484032 pmcid: 5448225 doi: 10.1073/pnas.1700765114
Adhikari, B. M. et al. Heritability estimates on resting state fMRI data using ENIGMA analysis pipeline. In Pacific Symposium on Biocomputing 2018: Proceedings of the Pacific Symposium 307-318 (World Scientific, 2018).
Elliott, L. T. et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 562, 210–216 (2018).
pubmed: 30305740 pmcid: 6786974 doi: 10.1038/s41586-018-0571-7
Chiesa, P. A. et al. Revolution of resting-state functional neuroimaging genetics in Alzheimer’s disease. Trends Neurosci. 40, 469–480 (2017).
pubmed: 28684173 pmcid: 5798613 doi: 10.1016/j.tins.2017.06.002
Zhang, N. et al. APOE and KIBRA interactions on brain functional connectivity in healthy young adults. Cereb. Cortex 27, 4797–4805 (2017).
pubmed: 27620974
Smith, S. M. et al. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat. Neurosci. 24, 737–745 (2021).
pubmed: 33875891 pmcid: 7610742 doi: 10.1038/s41593-021-00826-4
Grasby, K. L. et al. The genetic architecture of the human cerebral cortex.Science 367, eaay6690 (2020).
pubmed: 32193296 pmcid: 7295264 doi: 10.1126/science.aay6690
Zhao, B. et al. Genome-wide association analysis of 19,629 individuals identifies variants influencing regional brain volumes and refines their genetic co-architecture with cognitive and mental health traits. Nat. Genet. 51, 1637–1644 (2019).
pubmed: 31676860 pmcid: 6858580 doi: 10.1038/s41588-019-0516-6
Smith, S. M. & Nichols, T. E. Statistical challenges in “big data” human neuroimaging. Neuron 97, 263–268 (2018).
pubmed: 29346749 doi: 10.1016/j.neuron.2017.12.018
Botvinik-Nezer, R. et al. Variability in the analysis of a single neuroimaging dataset by many teams. Nature 582, 84–88 (2020).
pubmed: 32483374 pmcid: 7771346 doi: 10.1038/s41586-020-2314-9
Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).
pubmed: 25826379 pmcid: 4380465 doi: 10.1371/journal.pmed.1001779
Casey, B. et al. The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites. Developmental Cogn. Neurosci. 32, 43–54 (2018).
doi: 10.1016/j.dcn.2018.03.001
Satterthwaite, T. D. et al. Neuroimaging of the Philadelphia neurodevelopmental cohort. Neuroimage 86, 544–553 (2014).
pubmed: 23921101 doi: 10.1016/j.neuroimage.2013.07.064
Somerville, L. H. et al. The lifespan human connectome project in development: a large-scale study of brain connectivity development in 5–21 year olds. NeuroImage 183, 456–468 (2018).
pubmed: 30142446 doi: 10.1016/j.neuroimage.2018.08.050
Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).
pubmed: 27643430 pmcid: 5086094 doi: 10.1038/nn.4393
Beckmann, C. F. & Smith, S. M. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23, 137–152 (2004).
pubmed: 14964560 doi: 10.1109/TMI.2003.822821
Hyvarinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10, 626–634 (1999).
pubmed: 18252563 doi: 10.1109/72.761722
Smith, S. M. et al. Resting-state fMRI in the human connectome project. Neuroimage 80, 144–168 (2013).
pubmed: 23702415 doi: 10.1016/j.neuroimage.2013.05.039
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
pubmed: 21167468 pmcid: 3014363 doi: 10.1016/j.ajhg.2010.11.011
Zhao, B. et al. Common genetic variation influencing human white matter microstructure. Science 372, eabf3736 (2021).
pubmed: 34140357 doi: 10.1126/science.abf3736
Watanabe, K., Taskesen, E., Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).
pubmed: 29184056 pmcid: 5705698 doi: 10.1038/s41467-017-01261-5
Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).
pubmed: 30617256 pmcid: 6836675 doi: 10.1038/s41588-018-0311-9
Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2018).
pmcid: 6323933 doi: 10.1093/nar/gky1120
Jun, G. R. et al. Transethnic genome‐wide scan identifies novel Alzheimer’s disease loci. Alzheimer’s Dement. 13, 727–738 (2017).
doi: 10.1016/j.jalz.2016.12.012
Nazarian, A., Yashin, A. I. & Kulminski, A. M. Genome-wide analysis of genetic predisposition to Alzheimer’s disease and related sex disparities. Alzheimer’s Res. Ther. 11, 5 (2019).
doi: 10.1186/s13195-018-0458-8
Harold, D. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet. 41, 1088–1093 (2009).
pubmed: 19734902 pmcid: 2845877 doi: 10.1038/ng.440
Ferrari, R. et al. A genome-wide screening and SNPs-to-genes approach to identify novel genetic risk factors associated with frontotemporal dementia. Neurobiol. aging 36, 2904.e13–2904.e26 (2015).
doi: 10.1016/j.neurobiolaging.2015.06.005
Beecham, G. W. et al. Genome-wide association meta-analysis of neuropathologic features of Alzheimer’s disease and related dementias. PLoS Genet. 10, e1004606 (2014).
pubmed: 25188341 pmcid: 4154667 doi: 10.1371/journal.pgen.1004606
Davies, G. et al. A genome-wide association study implicates the APOE locus in nonpathological cognitive ageing. Mol. Psychiatry 19, 76–87 (2014).
pubmed: 23207651 doi: 10.1038/mp.2012.159
Liu, C. et al. Genome-wide association and mechanistic studies indicate that immune response contributes to Alzheimer’s disease development. Front. Genet. 9, 410 (2018).
pubmed: 30319691 pmcid: 6166008 doi: 10.3389/fgene.2018.00410
Yan, Q. et al. Genome-wide association study of brain amyloid deposition as measured by Pittsburgh Compound-B (PiB)-PET imaging. Mol. Psychiatry 26, 309–321 (2021).
pubmed: 30361487 doi: 10.1038/s41380-018-0246-7
Scelsi, M. A. et al. Genetic study of multimodal imaging Alzheimer’s disease progression score implicates novel loci. Brain 141, 2167–2180 (2018).
pubmed: 29860282 pmcid: 6022660 doi: 10.1093/brain/awy141
Liang, P. et al. Altered amplitude of low-frequency fluctuations in early and late mild cognitive impairment and Alzheimer’s disease. Curr. Alzheimer Res. 11, 389–398 (2014).
pubmed: 24720892 doi: 10.2174/1567205011666140331225335
Mattsson, N. et al. Emerging β-amyloid pathology and accelerated cortical atrophy. JAMA Neurol. 71, 725–734 (2014).
pubmed: 24781145 pmcid: 4410966 doi: 10.1001/jamaneurol.2014.446
Pickrell, J. K. et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet. 48, 709–717 (2016).
pubmed: 27182965 pmcid: 5207801 doi: 10.1038/ng.3570
Consortium, I. P. D. G. Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 377, 641–649 (2011).
doi: 10.1016/S0140-6736(10)62345-8
Vacic, V. et al. Genome-wide mapping of IBD segments in an Ashkenazi PD cohort identifies associated haplotypes. Hum. Mol. Genet. 23, 4693–4702 (2014).
pubmed: 24842889 pmcid: 4119402 doi: 10.1093/hmg/ddu158
Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).
pubmed: 29483656 pmcid: 5918692 doi: 10.1038/s41588-018-0059-2
Hyde, C. L. et al. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat. Genet. 48, 1031–1036 (2016).
pubmed: 27479909 pmcid: 5706769 doi: 10.1038/ng.3623
Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343–352 (2019).
pubmed: 30718901 pmcid: 6522363 doi: 10.1038/s41593-018-0326-7
Anney, R. J. et al. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24. 32 and a significant overlap with schizophrenia. Mol. Autism 8, 21 (2017).
doi: 10.1186/s13229-017-0137-9
Nagel, M. et al. Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nat. Genet. 50, 920–927 (2018).
pubmed: 29942085 doi: 10.1038/s41588-018-0151-7
Baselmans, B. M. et al. Multivariate genome-wide analyses of the well-being spectrum. Nat. Genet. 51, 445–451 (2019).
pubmed: 30643256 doi: 10.1038/s41588-018-0320-8
Lane, J. M. et al. Biological and clinical insights from genetics of insomnia symptoms. Nat. Genet. 51, 387–393 (2019).
pubmed: 30804566 pmcid: 6415688 doi: 10.1038/s41588-019-0361-7
Hill, W. et al. A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence. Mol. Psychiatry 24, 169–181 (2019).
pubmed: 29326435 doi: 10.1038/s41380-017-0001-5
Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018).
pubmed: 30038396 pmcid: 6393768 doi: 10.1038/s41588-018-0147-3
Supekar, K., Cai, W., Krishnadas, R., Palaniyappan, L. & Menon, V. Dysregulated brain dynamics in a triple-network saliency model of schizophrenia and its relation to psychosis. Biol. Psychiatry 85, 60–69 (2019).
pubmed: 30177256 doi: 10.1016/j.biopsych.2018.07.020
Zheng, H. et al. The altered triple networks interaction in depression under resting state based on graph theory. BioMed. Res. Int. 2015, 386326 (2015).
pubmed: 26180798 pmcid: 4477135
Uddin, L. Q. et al. Salience network–based classification and prediction of symptom severity in children with autism. JAMA psychiatry 70, 869–879 (2013).
pubmed: 23803651 pmcid: 3951904 doi: 10.1001/jamapsychiatry.2013.104
Ripke, S. et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).
pmcid: 4112379 doi: 10.1038/nature13595
Davies, G. et al. Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N=112 151). Mol. Psychiatry 21, 758–767 (2016).
pubmed: 27046643 pmcid: 4879186 doi: 10.1038/mp.2016.45
Kichaev, G. et al. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet. 104, 65–75 (2019).
pubmed: 30595370 doi: 10.1016/j.ajhg.2018.11.008
Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237–244 (2019).
pubmed: 30643251 pmcid: 6358542 doi: 10.1038/s41588-018-0307-5
Savage, J. E. et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat. Genet. 50, 912–919 (2018).
pubmed: 29942086 pmcid: 6411041 doi: 10.1038/s41588-018-0152-6
Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).
pubmed: 30804558 pmcid: 6454898 doi: 10.1038/s41588-019-0344-8
Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).
pubmed: 26414676 pmcid: 4797329 doi: 10.1038/ng.3406
Binkofski, F. C., Klann, J. & Caspers, S. On the neuroanatomy and functional role of the inferior parietal lobule and intraparietal sulcus. In Neurobiology of Language 35–47 (Elsevier, 2016).
Cappelletti, M., Lee, H. L., Freeman, E. D. & Price, C. J. The role of right and left parietal lobes in the conceptual processing of numbers. J. Cogn. Neurosci. 22, 331–346 (2010).
pubmed: 19400672 pmcid: 2808313 doi: 10.1162/jocn.2009.21246
Koenigs, M., Barbey, A. K., Postle, B. R. & Grafman, J. Superior parietal cortex is critical for the manipulation of information in working memory. J. Neurosci. 29, 14980–14986 (2009).
pubmed: 19940193 pmcid: 2799248 doi: 10.1523/JNEUROSCI.3706-09.2009
Bijsterbosch, J. D., Beckmann, C. F., Woolrich, M. W., Smith, S. M. & Harrison, S. J. The relationship between spatial configuration and functional connectivity of brain regions revisited. Elife 8, e44890 (2019).
pubmed: 31066676 pmcid: 6541435 doi: 10.7554/eLife.44890
Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379 (2013).
pmcid: 3714010 doi: 10.1016/S0140-6736(12)62129-1
Zovetti, N. et al. Default mode network activity in bipolar disorder. Epidemiol. Psychiatr. Sci. 29, e166 (2020).
pubmed: 32895076 pmcid: 7503172 doi: 10.1017/S2045796020000803
Gur, R. E. & Gur, R. C. Functional magnetic resonance imaging in schizophrenia. Dialogues Clin. Neurosci. 12, 333 (2010).
pubmed: 20954429 pmcid: 3181978 doi: 10.31887/DCNS.2010.12.3/rgur
Adams, R. A. et al. Impaired theta phase coupling underlies frontotemporal dysconnectivity in schizophrenia. Brain 143, 1261–1277 (2020).
pubmed: 32236540 pmcid: 7174039 doi: 10.1093/brain/awaa035
de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).
pubmed: 25885710 pmcid: 4401657 doi: 10.1371/journal.pcbi.1004219
Wang, Q. et al. A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data. Nat. Neurosci. 22, 691 (2019).
pubmed: 30988527 pmcid: 6646046 doi: 10.1038/s41593-019-0382-7
Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).
pubmed: 26414678 pmcid: 4626285 doi: 10.1038/ng.3404
Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).
pubmed: 25693563 pmcid: 4530010 doi: 10.1038/nature14248
Schmitt, A. D. et al. A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep. 17, 2042–2059 (2016).
pubmed: 27851967 pmcid: 5478386 doi: 10.1016/j.celrep.2016.10.061
Giusti-Rodriguez, P. M. & Sullivan, P. F. Using three-dimensional regulatory chromatin interactions from adult and fetal cortex to interpret genetic results for psychiatric disorders and cognitive traits. Preprint in bioRxiv, https://doi.org/10.1101/406330 (2019).
Huang, H. et al. Improving polygenic prediction in ancestrally diverse populations. Preprint in medRxiv https://doi.org/10.1101/2020.12.27.20248738 (2020).
Fortin, J.-P. et al. Removing inter-subject technical variability in magnetic resonance imaging studies. Neuroimage 132, 198–212 (2016).
pubmed: 26923370 doi: 10.1016/j.neuroimage.2016.02.036
Alfaro-Almagro, F. et al. Confound modelling in UK Biobank brain imaging. NeuroImage 224, 117002 (2020).
pubmed: 32502668 doi: 10.1016/j.neuroimage.2020.117002
Anderson, K. M. et al. Heritability of individualized cortical network topography. Proc. Natl Acad. Sci. USA 118, e2016271118 (2021).
pubmed: 33622790 pmcid: 7936334 doi: 10.1073/pnas.2016271118
Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. cortex 28, 3095–3114 (2018).
pubmed: 28981612 doi: 10.1093/cercor/bhx179
Jahanshad, N. et al. Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: a pilot project of the ENIGMA–DTI working group. Neuroimage 81, 455–469 (2013).
pubmed: 23629049 doi: 10.1016/j.neuroimage.2013.04.061
Kochunov, P. et al. Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: comparing meta and megaanalytical approaches for data pooling. Neuroimage 95, 136–150 (2014).
pubmed: 24657781 doi: 10.1016/j.neuroimage.2014.03.033
Rolls, E. T., Huang, C.-C., Lin, C.-P., Feng, J. & Joliot, M. Automated anatomical labelling atlas 3. NeuroImage 206, 116189 (2020).
pubmed: 31521825 doi: 10.1016/j.neuroimage.2019.116189
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743 pmcid: 6786975 doi: 10.1038/s41586-018-0579-z
Jiang, L. et al. A resource-efficient tool for mixed model association analysis of large-scale data. Nat. Genet. 51, 1749–1755 (2019).
pubmed: 31768069 doi: 10.1038/s41588-019-0530-8
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
pubmed: 17701901 pmcid: 1950838 doi: 10.1086/519795
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
pubmed: 20616382 pmcid: 2922887 doi: 10.1093/bioinformatics/btq340
Mak, T. S. H., Porsch, R. M., Choi, S. W., Zhou, X. & Sham, P. C. Polygenic scores via penalized regression on summary statistics. Genet. Epidemiol. 41, 469–480 (2017).
pubmed: 28480976 doi: 10.1002/gepi.22050
International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).
doi: 10.1038/nature09298
Hauberg, M. E. et al. Common schizophrenia risk variants are enriched in open chromatin regions of human glutamatergic neurons. Nat. Commun. 11, 5581 (2020).
pubmed: 33149216 pmcid: 7643171 doi: 10.1038/s41467-020-19319-2
Liberzon, A. et al. Molecular Signatures Database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).
pubmed: 21546393 pmcid: 3106198 doi: 10.1093/bioinformatics/btr260
Jung, I. et al. A compendium of promoter-centered long-range chromatin interactions in the human genome. Nat. Genet. 51, 1442–1449 (2019).
pubmed: 31501517 pmcid: 6778519 doi: 10.1038/s41588-019-0494-8
Song, M. et al. Mapping cis-regulatory chromatin contacts in neural cells links neuropsychiatric disorder risk variants to target genes. Nat. Genet. 51, 1252–1262 (2019).
pubmed: 31367015 pmcid: 6677164 doi: 10.1038/s41588-019-0472-1
Song, M. et al. Cell-type-specific 3D epigenomes in the developing human cortex. Nature 587, 644–649 (2020).
pubmed: 33057195 pmcid: 7704572 doi: 10.1038/s41586-020-2825-4
Zhao, B. et al. GWAS summary statistics for 191 resting-state functional MRI (rs-fMRI) traits. Zenodo https://doi.org/10.5281/zenodo.5775047 (2021).
doi: 10.5281/zenodo.5775047

Auteurs

Bingxin Zhao (B)

Department of Statistics, Purdue University, West Lafayette, IN, USA.

Tengfei Li (T)

Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Stephen M Smith (SM)

Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.

Di Xiong (D)

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Xifeng Wang (X)

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Yue Yang (Y)

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Tianyou Luo (T)

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Ziliang Zhu (Z)

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Yue Shan (Y)

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Nana Matoba (N)

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Quan Sun (Q)

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Yuchen Yang (Y)

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Mads E Hauberg (ME)

Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.
Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark.

Jaroslav Bendl (J)

Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

John F Fullard (JF)

Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Panagiotis Roussos (P)

Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.
Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA.

Weili Lin (W)

Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.

Yun Li (Y)

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Jason L Stein (JL)

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Hongtu Zhu (H)

Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. htzhu@email.unc.edu.
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. htzhu@email.unc.edu.
Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. htzhu@email.unc.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH