Common variants contribute to intrinsic human brain functional networks.
Journal
Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904
Informations de publication
Date de publication:
04 2022
04 2022
Historique:
received:
21
12
2020
accepted:
28
02
2022
pubmed:
9
4
2022
medline:
15
4
2022
entrez:
8
4
2022
Statut:
ppublish
Résumé
The human brain forms functional networks of correlated activity, which have been linked with both cognitive and clinical outcomes. However, the genetic variants affecting brain function are largely unknown. Here, we used resting-state functional magnetic resonance images from 47,276 individuals to discover and validate common genetic variants influencing intrinsic brain activity. We identified 45 new genetic regions associated with brain functional signatures (P < 2.8 × 10
Identifiants
pubmed: 35393594
doi: 10.1038/s41588-022-01039-6
pii: 10.1038/s41588-022-01039-6
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
508-517Subventions
Organisme : NIMH NIH HHS
ID : RC2 MH089924
Pays : United States
Organisme : NIMH NIH HHS
ID : U54 MH091657
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH116527
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041174
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041156
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041093
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041106
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041148
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041089
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041134
Pays : United States
Organisme : NIDA NIH HHS
ID : U24 DA041147
Pays : United States
Organisme : NIMH NIH HHS
ID : RC2 MH089983
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041048
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041022
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041025
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041120
Pays : United States
Organisme : NIDA NIH HHS
ID : U24 DA041123
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041028
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA041117
Pays : United States
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Petersen, S. E. & Sporns, O. Brain networks and cognitive architectures. Neuron 88, 207–219 (2015).
pubmed: 26447582
pmcid: 4598639
doi: 10.1016/j.neuron.2015.09.027
van den Heuvel, M. P. & Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 17, 683–696 (2013).
pubmed: 24231140
doi: 10.1016/j.tics.2013.09.012
Lv, H. et al. Resting-state functional MRI: everything that nonexperts have always wanted to know. Am. J. Neuroradiol. 39, 1390–1399 (2018).
pubmed: 29348136
pmcid: 6051935
doi: 10.3174/ajnr.A5452
Alfaro-Almagro, F. et al. Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank. NeuroImage 166, 400–424 (2018).
pubmed: 29079522
doi: 10.1016/j.neuroimage.2017.10.034
Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).
pubmed: 26457551
pmcid: 5008686
doi: 10.1038/nn.4135
Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl Acad. Sci. USA 106, 13040–13045 (2009).
pubmed: 19620724
pmcid: 2722273
doi: 10.1073/pnas.0905267106
Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).
pubmed: 21653723
doi: 10.1152/jn.00338.2011
Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506 (2011).
pubmed: 21908230
doi: 10.1016/j.tics.2011.08.003
Menon, V. The triple network model, insight, and large-scale brain organization in autism. Biol. Psychiatry 84, 236–238 (2018).
pubmed: 30071947
pmcid: 6345251
doi: 10.1016/j.biopsych.2018.06.012
Badhwar, A. et al. Resting-state network dysfunction in Alzheimer’s disease: a systematic review and meta-analysis. Alzheimers Dement. (Amst). 8, 73–85 (2017).
pubmed: 28560308
pmcid: 5436069
doi: 10.1016/j.dadm.2017.03.007
Wolters, A. F. et al. Resting-state fMRI in Parkinson’s disease patients with cognitive impairment: a meta-analysis. Parkinsonism Relat. Disord. 62, 16–27 (2019).
pubmed: 30580907
doi: 10.1016/j.parkreldis.2018.12.016
Mulders, P. C., van Eijndhoven, P. F., Schene, A. H., Beckmann, C. F. & Tendolkar, I. Resting-state functional connectivity in major depressive disorder: a review. Neurosci. Biobehav. Rev. 56, 330–344 (2015).
pubmed: 26234819
doi: 10.1016/j.neubiorev.2015.07.014
Foo, H. et al. Genetic influence on ageing-related changes in resting-state brain functional networks in healthy adults: a systematic review. Neurosci. Biobehav. Rev. 113, 98–110 (2020).
pubmed: 32169413
doi: 10.1016/j.neubiorev.2020.03.011
Glahn, D. et al. Genetic control over the resting brain. Proc. Natl Acad. Sci. USA 107, 1223–1228 (2010).
pubmed: 20133824
pmcid: 2824276
doi: 10.1073/pnas.0909969107
Elliott, M. L. et al. General functional connectivity: shared features of resting-state and task fMRI drive reliable and heritable individual differences in functional brain networks. NeuroImage 189, 516–532 (2019).
pubmed: 30708106
doi: 10.1016/j.neuroimage.2019.01.068
Ge, T., Holmes, A. J., Buckner, R. L., Smoller, J. W. & Sabuncu, M. R. Heritability analysis with repeat measurements and its application to resting-state functional connectivity. Proc. Natl Acad. Sci. USA 114, 5521–5526 (2017).
pubmed: 28484032
pmcid: 5448225
doi: 10.1073/pnas.1700765114
Adhikari, B. M. et al. Heritability estimates on resting state fMRI data using ENIGMA analysis pipeline. In Pacific Symposium on Biocomputing 2018: Proceedings of the Pacific Symposium 307-318 (World Scientific, 2018).
Elliott, L. T. et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 562, 210–216 (2018).
pubmed: 30305740
pmcid: 6786974
doi: 10.1038/s41586-018-0571-7
Chiesa, P. A. et al. Revolution of resting-state functional neuroimaging genetics in Alzheimer’s disease. Trends Neurosci. 40, 469–480 (2017).
pubmed: 28684173
pmcid: 5798613
doi: 10.1016/j.tins.2017.06.002
Zhang, N. et al. APOE and KIBRA interactions on brain functional connectivity in healthy young adults. Cereb. Cortex 27, 4797–4805 (2017).
pubmed: 27620974
Smith, S. M. et al. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat. Neurosci. 24, 737–745 (2021).
pubmed: 33875891
pmcid: 7610742
doi: 10.1038/s41593-021-00826-4
Grasby, K. L. et al. The genetic architecture of the human cerebral cortex.Science 367, eaay6690 (2020).
pubmed: 32193296
pmcid: 7295264
doi: 10.1126/science.aay6690
Zhao, B. et al. Genome-wide association analysis of 19,629 individuals identifies variants influencing regional brain volumes and refines their genetic co-architecture with cognitive and mental health traits. Nat. Genet. 51, 1637–1644 (2019).
pubmed: 31676860
pmcid: 6858580
doi: 10.1038/s41588-019-0516-6
Smith, S. M. & Nichols, T. E. Statistical challenges in “big data” human neuroimaging. Neuron 97, 263–268 (2018).
pubmed: 29346749
doi: 10.1016/j.neuron.2017.12.018
Botvinik-Nezer, R. et al. Variability in the analysis of a single neuroimaging dataset by many teams. Nature 582, 84–88 (2020).
pubmed: 32483374
pmcid: 7771346
doi: 10.1038/s41586-020-2314-9
Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).
pubmed: 25826379
pmcid: 4380465
doi: 10.1371/journal.pmed.1001779
Casey, B. et al. The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites. Developmental Cogn. Neurosci. 32, 43–54 (2018).
doi: 10.1016/j.dcn.2018.03.001
Satterthwaite, T. D. et al. Neuroimaging of the Philadelphia neurodevelopmental cohort. Neuroimage 86, 544–553 (2014).
pubmed: 23921101
doi: 10.1016/j.neuroimage.2013.07.064
Somerville, L. H. et al. The lifespan human connectome project in development: a large-scale study of brain connectivity development in 5–21 year olds. NeuroImage 183, 456–468 (2018).
pubmed: 30142446
doi: 10.1016/j.neuroimage.2018.08.050
Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).
pubmed: 27643430
pmcid: 5086094
doi: 10.1038/nn.4393
Beckmann, C. F. & Smith, S. M. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23, 137–152 (2004).
pubmed: 14964560
doi: 10.1109/TMI.2003.822821
Hyvarinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10, 626–634 (1999).
pubmed: 18252563
doi: 10.1109/72.761722
Smith, S. M. et al. Resting-state fMRI in the human connectome project. Neuroimage 80, 144–168 (2013).
pubmed: 23702415
doi: 10.1016/j.neuroimage.2013.05.039
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
pubmed: 21167468
pmcid: 3014363
doi: 10.1016/j.ajhg.2010.11.011
Zhao, B. et al. Common genetic variation influencing human white matter microstructure. Science 372, eabf3736 (2021).
pubmed: 34140357
doi: 10.1126/science.abf3736
Watanabe, K., Taskesen, E., Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).
pubmed: 29184056
pmcid: 5705698
doi: 10.1038/s41467-017-01261-5
Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).
pubmed: 30617256
pmcid: 6836675
doi: 10.1038/s41588-018-0311-9
Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2018).
pmcid: 6323933
doi: 10.1093/nar/gky1120
Jun, G. R. et al. Transethnic genome‐wide scan identifies novel Alzheimer’s disease loci. Alzheimer’s Dement. 13, 727–738 (2017).
doi: 10.1016/j.jalz.2016.12.012
Nazarian, A., Yashin, A. I. & Kulminski, A. M. Genome-wide analysis of genetic predisposition to Alzheimer’s disease and related sex disparities. Alzheimer’s Res. Ther. 11, 5 (2019).
doi: 10.1186/s13195-018-0458-8
Harold, D. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet. 41, 1088–1093 (2009).
pubmed: 19734902
pmcid: 2845877
doi: 10.1038/ng.440
Ferrari, R. et al. A genome-wide screening and SNPs-to-genes approach to identify novel genetic risk factors associated with frontotemporal dementia. Neurobiol. aging 36, 2904.e13–2904.e26 (2015).
doi: 10.1016/j.neurobiolaging.2015.06.005
Beecham, G. W. et al. Genome-wide association meta-analysis of neuropathologic features of Alzheimer’s disease and related dementias. PLoS Genet. 10, e1004606 (2014).
pubmed: 25188341
pmcid: 4154667
doi: 10.1371/journal.pgen.1004606
Davies, G. et al. A genome-wide association study implicates the APOE locus in nonpathological cognitive ageing. Mol. Psychiatry 19, 76–87 (2014).
pubmed: 23207651
doi: 10.1038/mp.2012.159
Liu, C. et al. Genome-wide association and mechanistic studies indicate that immune response contributes to Alzheimer’s disease development. Front. Genet. 9, 410 (2018).
pubmed: 30319691
pmcid: 6166008
doi: 10.3389/fgene.2018.00410
Yan, Q. et al. Genome-wide association study of brain amyloid deposition as measured by Pittsburgh Compound-B (PiB)-PET imaging. Mol. Psychiatry 26, 309–321 (2021).
pubmed: 30361487
doi: 10.1038/s41380-018-0246-7
Scelsi, M. A. et al. Genetic study of multimodal imaging Alzheimer’s disease progression score implicates novel loci. Brain 141, 2167–2180 (2018).
pubmed: 29860282
pmcid: 6022660
doi: 10.1093/brain/awy141
Liang, P. et al. Altered amplitude of low-frequency fluctuations in early and late mild cognitive impairment and Alzheimer’s disease. Curr. Alzheimer Res. 11, 389–398 (2014).
pubmed: 24720892
doi: 10.2174/1567205011666140331225335
Mattsson, N. et al. Emerging β-amyloid pathology and accelerated cortical atrophy. JAMA Neurol. 71, 725–734 (2014).
pubmed: 24781145
pmcid: 4410966
doi: 10.1001/jamaneurol.2014.446
Pickrell, J. K. et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet. 48, 709–717 (2016).
pubmed: 27182965
pmcid: 5207801
doi: 10.1038/ng.3570
Consortium, I. P. D. G. Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 377, 641–649 (2011).
doi: 10.1016/S0140-6736(10)62345-8
Vacic, V. et al. Genome-wide mapping of IBD segments in an Ashkenazi PD cohort identifies associated haplotypes. Hum. Mol. Genet. 23, 4693–4702 (2014).
pubmed: 24842889
pmcid: 4119402
doi: 10.1093/hmg/ddu158
Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).
pubmed: 29483656
pmcid: 5918692
doi: 10.1038/s41588-018-0059-2
Hyde, C. L. et al. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat. Genet. 48, 1031–1036 (2016).
pubmed: 27479909
pmcid: 5706769
doi: 10.1038/ng.3623
Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343–352 (2019).
pubmed: 30718901
pmcid: 6522363
doi: 10.1038/s41593-018-0326-7
Anney, R. J. et al. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24. 32 and a significant overlap with schizophrenia. Mol. Autism 8, 21 (2017).
doi: 10.1186/s13229-017-0137-9
Nagel, M. et al. Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nat. Genet. 50, 920–927 (2018).
pubmed: 29942085
doi: 10.1038/s41588-018-0151-7
Baselmans, B. M. et al. Multivariate genome-wide analyses of the well-being spectrum. Nat. Genet. 51, 445–451 (2019).
pubmed: 30643256
doi: 10.1038/s41588-018-0320-8
Lane, J. M. et al. Biological and clinical insights from genetics of insomnia symptoms. Nat. Genet. 51, 387–393 (2019).
pubmed: 30804566
pmcid: 6415688
doi: 10.1038/s41588-019-0361-7
Hill, W. et al. A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence. Mol. Psychiatry 24, 169–181 (2019).
pubmed: 29326435
doi: 10.1038/s41380-017-0001-5
Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018).
pubmed: 30038396
pmcid: 6393768
doi: 10.1038/s41588-018-0147-3
Supekar, K., Cai, W., Krishnadas, R., Palaniyappan, L. & Menon, V. Dysregulated brain dynamics in a triple-network saliency model of schizophrenia and its relation to psychosis. Biol. Psychiatry 85, 60–69 (2019).
pubmed: 30177256
doi: 10.1016/j.biopsych.2018.07.020
Zheng, H. et al. The altered triple networks interaction in depression under resting state based on graph theory. BioMed. Res. Int. 2015, 386326 (2015).
pubmed: 26180798
pmcid: 4477135
Uddin, L. Q. et al. Salience network–based classification and prediction of symptom severity in children with autism. JAMA psychiatry 70, 869–879 (2013).
pubmed: 23803651
pmcid: 3951904
doi: 10.1001/jamapsychiatry.2013.104
Ripke, S. et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).
pmcid: 4112379
doi: 10.1038/nature13595
Davies, G. et al. Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N=112 151). Mol. Psychiatry 21, 758–767 (2016).
pubmed: 27046643
pmcid: 4879186
doi: 10.1038/mp.2016.45
Kichaev, G. et al. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet. 104, 65–75 (2019).
pubmed: 30595370
doi: 10.1016/j.ajhg.2018.11.008
Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237–244 (2019).
pubmed: 30643251
pmcid: 6358542
doi: 10.1038/s41588-018-0307-5
Savage, J. E. et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat. Genet. 50, 912–919 (2018).
pubmed: 29942086
pmcid: 6411041
doi: 10.1038/s41588-018-0152-6
Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).
pubmed: 30804558
pmcid: 6454898
doi: 10.1038/s41588-019-0344-8
Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).
pubmed: 26414676
pmcid: 4797329
doi: 10.1038/ng.3406
Binkofski, F. C., Klann, J. & Caspers, S. On the neuroanatomy and functional role of the inferior parietal lobule and intraparietal sulcus. In Neurobiology of Language 35–47 (Elsevier, 2016).
Cappelletti, M., Lee, H. L., Freeman, E. D. & Price, C. J. The role of right and left parietal lobes in the conceptual processing of numbers. J. Cogn. Neurosci. 22, 331–346 (2010).
pubmed: 19400672
pmcid: 2808313
doi: 10.1162/jocn.2009.21246
Koenigs, M., Barbey, A. K., Postle, B. R. & Grafman, J. Superior parietal cortex is critical for the manipulation of information in working memory. J. Neurosci. 29, 14980–14986 (2009).
pubmed: 19940193
pmcid: 2799248
doi: 10.1523/JNEUROSCI.3706-09.2009
Bijsterbosch, J. D., Beckmann, C. F., Woolrich, M. W., Smith, S. M. & Harrison, S. J. The relationship between spatial configuration and functional connectivity of brain regions revisited. Elife 8, e44890 (2019).
pubmed: 31066676
pmcid: 6541435
doi: 10.7554/eLife.44890
Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379 (2013).
pmcid: 3714010
doi: 10.1016/S0140-6736(12)62129-1
Zovetti, N. et al. Default mode network activity in bipolar disorder. Epidemiol. Psychiatr. Sci. 29, e166 (2020).
pubmed: 32895076
pmcid: 7503172
doi: 10.1017/S2045796020000803
Gur, R. E. & Gur, R. C. Functional magnetic resonance imaging in schizophrenia. Dialogues Clin. Neurosci. 12, 333 (2010).
pubmed: 20954429
pmcid: 3181978
doi: 10.31887/DCNS.2010.12.3/rgur
Adams, R. A. et al. Impaired theta phase coupling underlies frontotemporal dysconnectivity in schizophrenia. Brain 143, 1261–1277 (2020).
pubmed: 32236540
pmcid: 7174039
doi: 10.1093/brain/awaa035
de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).
pubmed: 25885710
pmcid: 4401657
doi: 10.1371/journal.pcbi.1004219
Wang, Q. et al. A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data. Nat. Neurosci. 22, 691 (2019).
pubmed: 30988527
pmcid: 6646046
doi: 10.1038/s41593-019-0382-7
Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).
pubmed: 26414678
pmcid: 4626285
doi: 10.1038/ng.3404
Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).
pubmed: 25693563
pmcid: 4530010
doi: 10.1038/nature14248
Schmitt, A. D. et al. A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep. 17, 2042–2059 (2016).
pubmed: 27851967
pmcid: 5478386
doi: 10.1016/j.celrep.2016.10.061
Giusti-Rodriguez, P. M. & Sullivan, P. F. Using three-dimensional regulatory chromatin interactions from adult and fetal cortex to interpret genetic results for psychiatric disorders and cognitive traits. Preprint in bioRxiv, https://doi.org/10.1101/406330 (2019).
Huang, H. et al. Improving polygenic prediction in ancestrally diverse populations. Preprint in medRxiv https://doi.org/10.1101/2020.12.27.20248738 (2020).
Fortin, J.-P. et al. Removing inter-subject technical variability in magnetic resonance imaging studies. Neuroimage 132, 198–212 (2016).
pubmed: 26923370
doi: 10.1016/j.neuroimage.2016.02.036
Alfaro-Almagro, F. et al. Confound modelling in UK Biobank brain imaging. NeuroImage 224, 117002 (2020).
pubmed: 32502668
doi: 10.1016/j.neuroimage.2020.117002
Anderson, K. M. et al. Heritability of individualized cortical network topography. Proc. Natl Acad. Sci. USA 118, e2016271118 (2021).
pubmed: 33622790
pmcid: 7936334
doi: 10.1073/pnas.2016271118
Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. cortex 28, 3095–3114 (2018).
pubmed: 28981612
doi: 10.1093/cercor/bhx179
Jahanshad, N. et al. Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: a pilot project of the ENIGMA–DTI working group. Neuroimage 81, 455–469 (2013).
pubmed: 23629049
doi: 10.1016/j.neuroimage.2013.04.061
Kochunov, P. et al. Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: comparing meta and megaanalytical approaches for data pooling. Neuroimage 95, 136–150 (2014).
pubmed: 24657781
doi: 10.1016/j.neuroimage.2014.03.033
Rolls, E. T., Huang, C.-C., Lin, C.-P., Feng, J. & Joliot, M. Automated anatomical labelling atlas 3. NeuroImage 206, 116189 (2020).
pubmed: 31521825
doi: 10.1016/j.neuroimage.2019.116189
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743
pmcid: 6786975
doi: 10.1038/s41586-018-0579-z
Jiang, L. et al. A resource-efficient tool for mixed model association analysis of large-scale data. Nat. Genet. 51, 1749–1755 (2019).
pubmed: 31768069
doi: 10.1038/s41588-019-0530-8
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
pubmed: 17701901
pmcid: 1950838
doi: 10.1086/519795
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
pubmed: 20616382
pmcid: 2922887
doi: 10.1093/bioinformatics/btq340
Mak, T. S. H., Porsch, R. M., Choi, S. W., Zhou, X. & Sham, P. C. Polygenic scores via penalized regression on summary statistics. Genet. Epidemiol. 41, 469–480 (2017).
pubmed: 28480976
doi: 10.1002/gepi.22050
International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).
doi: 10.1038/nature09298
Hauberg, M. E. et al. Common schizophrenia risk variants are enriched in open chromatin regions of human glutamatergic neurons. Nat. Commun. 11, 5581 (2020).
pubmed: 33149216
pmcid: 7643171
doi: 10.1038/s41467-020-19319-2
Liberzon, A. et al. Molecular Signatures Database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).
pubmed: 21546393
pmcid: 3106198
doi: 10.1093/bioinformatics/btr260
Jung, I. et al. A compendium of promoter-centered long-range chromatin interactions in the human genome. Nat. Genet. 51, 1442–1449 (2019).
pubmed: 31501517
pmcid: 6778519
doi: 10.1038/s41588-019-0494-8
Song, M. et al. Mapping cis-regulatory chromatin contacts in neural cells links neuropsychiatric disorder risk variants to target genes. Nat. Genet. 51, 1252–1262 (2019).
pubmed: 31367015
pmcid: 6677164
doi: 10.1038/s41588-019-0472-1
Song, M. et al. Cell-type-specific 3D epigenomes in the developing human cortex. Nature 587, 644–649 (2020).
pubmed: 33057195
pmcid: 7704572
doi: 10.1038/s41586-020-2825-4
Zhao, B. et al. GWAS summary statistics for 191 resting-state functional MRI (rs-fMRI) traits. Zenodo https://doi.org/10.5281/zenodo.5775047 (2021).
doi: 10.5281/zenodo.5775047