Methodological conduct of prognostic prediction models developed using machine learning in oncology: a systematic review.


Journal

BMC medical research methodology
ISSN: 1471-2288
Titre abrégé: BMC Med Res Methodol
Pays: England
ID NLM: 100968545

Informations de publication

Date de publication:
08 04 2022
Historique:
received: 21 11 2021
accepted: 18 03 2022
entrez: 9 4 2022
pubmed: 10 4 2022
medline: 13 4 2022
Statut: epublish

Résumé

Describe and evaluate the methodological conduct of prognostic prediction models developed using machine learning methods in oncology. We conducted a systematic review in MEDLINE and Embase between 01/01/2019 and 05/09/2019, for studies developing a prognostic prediction model using machine learning methods in oncology. We used the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement, Prediction model Risk Of Bias ASsessment Tool (PROBAST) and CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) to assess the methodological conduct of included publications. Results were summarised by modelling type: regression-, non-regression-based and ensemble machine learning models. Sixty-two publications met inclusion criteria developing 152 models across all publications. Forty-two models were regression-based, 71 were non-regression-based and 39 were ensemble models. A median of 647 individuals (IQR: 203 to 4059) and 195 events (IQR: 38 to 1269) were used for model development, and 553 individuals (IQR: 69 to 3069) and 50 events (IQR: 17.5 to 326.5) for model validation. A higher number of events per predictor was used for developing regression-based models (median: 8, IQR: 7.1 to 23.5), compared to alternative machine learning (median: 3.4, IQR: 1.1 to 19.1) and ensemble models (median: 1.7, IQR: 1.1 to 6). Sample size was rarely justified (n = 5/62; 8%). Some or all continuous predictors were categorised before modelling in 24 studies (39%). 46% (n = 24/62) of models reporting predictor selection before modelling used univariable analyses, and common method across all modelling types. Ten out of 24 models for time-to-event outcomes accounted for censoring (42%). A split sample approach was the most popular method for internal validation (n = 25/62, 40%). Calibration was reported in 11 studies. Less than half of models were reported or made available. The methodological conduct of machine learning based clinical prediction models is poor. Guidance is urgently needed, with increased awareness and education of minimum prediction modelling standards. Particular focus is needed on sample size estimation, development and validation analysis methods, and ensuring the model is available for independent validation, to improve quality of machine learning based clinical prediction models.

Sections du résumé

BACKGROUND
Describe and evaluate the methodological conduct of prognostic prediction models developed using machine learning methods in oncology.
METHODS
We conducted a systematic review in MEDLINE and Embase between 01/01/2019 and 05/09/2019, for studies developing a prognostic prediction model using machine learning methods in oncology. We used the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement, Prediction model Risk Of Bias ASsessment Tool (PROBAST) and CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) to assess the methodological conduct of included publications. Results were summarised by modelling type: regression-, non-regression-based and ensemble machine learning models.
RESULTS
Sixty-two publications met inclusion criteria developing 152 models across all publications. Forty-two models were regression-based, 71 were non-regression-based and 39 were ensemble models. A median of 647 individuals (IQR: 203 to 4059) and 195 events (IQR: 38 to 1269) were used for model development, and 553 individuals (IQR: 69 to 3069) and 50 events (IQR: 17.5 to 326.5) for model validation. A higher number of events per predictor was used for developing regression-based models (median: 8, IQR: 7.1 to 23.5), compared to alternative machine learning (median: 3.4, IQR: 1.1 to 19.1) and ensemble models (median: 1.7, IQR: 1.1 to 6). Sample size was rarely justified (n = 5/62; 8%). Some or all continuous predictors were categorised before modelling in 24 studies (39%). 46% (n = 24/62) of models reporting predictor selection before modelling used univariable analyses, and common method across all modelling types. Ten out of 24 models for time-to-event outcomes accounted for censoring (42%). A split sample approach was the most popular method for internal validation (n = 25/62, 40%). Calibration was reported in 11 studies. Less than half of models were reported or made available.
CONCLUSIONS
The methodological conduct of machine learning based clinical prediction models is poor. Guidance is urgently needed, with increased awareness and education of minimum prediction modelling standards. Particular focus is needed on sample size estimation, development and validation analysis methods, and ensuring the model is available for independent validation, to improve quality of machine learning based clinical prediction models.

Identifiants

pubmed: 35395724
doi: 10.1186/s12874-022-01577-x
pii: 10.1186/s12874-022-01577-x
pmc: PMC8991704
doi:

Types de publication

Journal Article Systematic Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

101

Subventions

Organisme : Department of Health
Pays : United Kingdom

Informations de copyright

© 2022. The Author(s).

Références

PLoS One. 2020 Jun 12;15(6):e0234722
pubmed: 32530947
EBioMedicine. 2018 May;31:36-46
pubmed: 29678673
J Biomed Inform. 2009 Apr;42(2):377-81
pubmed: 18929686
J Pharmacol Sci. 2019 May;140(1):20-25
pubmed: 31105026
Neurosurgery. 2019 Oct 1;85(4):E756-E764
pubmed: 31149726
Eur J Cardiothorac Surg. 2012 Apr;41(4):734-44; discussion 744-5
pubmed: 22378855
Cancer Med. 2019 Sep;8(11):5058-5067
pubmed: 31305031
Radiother Oncol. 2019 Apr;133:106-112
pubmed: 30935565
BMC Med. 2021 Apr 6;19(1):85
pubmed: 33820530
BJU Int. 2019 Jan;123(1):51-57
pubmed: 29969172
Ann Intern Med. 2019 Jan 1;170(1):51-58
pubmed: 30596875
Pharmacoepidemiol Drug Saf. 2019 Feb;28(2):171-178
pubmed: 30411431
PLoS Med. 2009 Jul 21;6(7):e1000097
pubmed: 19621072
J Natl Cancer Inst. 1998 May 20;90(10):766-71
pubmed: 9605647
Surg Oncol. 2019 Jun;29:120-125
pubmed: 31196475
BMJ. 2017 May 23;357:j2099
pubmed: 28536104
World Neurosurg. 2019 Jul;127:e124-e131
pubmed: 30862584
Nature. 2015 May 28;521(7553):436-44
pubmed: 26017442
BMJ. 2021 Oct 20;375:n2281
pubmed: 34670780
Front Oncol. 2019 Aug 14;9:771
pubmed: 31475114
Lancet. 2019 Apr 20;393(10181):1577-1579
pubmed: 31007185
Am J Obstet Gynecol. 2019 Apr;220(4):381.e1-381.e14
pubmed: 30582927
J Geriatr Oncol. 2019 Jan;10(1):120-125
pubmed: 30017733
J Clin Epidemiol. 2019 Jun;110:12-22
pubmed: 30763612
BMC Palliat Care. 2019 Jun 4;18(1):46
pubmed: 31164115
Br J Oral Maxillofac Surg. 2019 Oct;57(8):771-777
pubmed: 31358374
Prev Med Rep. 2018 Nov 12;13:153-159
pubmed: 30591857
J Med Internet Res. 2019 May 16;21(5):e13260
pubmed: 31099339
Chest. 1991 Dec;100(6):1619-36
pubmed: 1959406
J Clin Epidemiol. 1996 Aug;49(8):907-16
pubmed: 8699212
F1000Res. 2016 Nov 16;5:2674
pubmed: 31231503
Ann Intern Med. 2019 Jan 1;170(1):W1-W33
pubmed: 30596876
Crit Care. 2019 Aug 22;23(1):284
pubmed: 31439010
BMC Med Res Methodol. 2016 Nov 24;16(1):163
pubmed: 27881078
BMJ. 2016 May 16;353:i2416
pubmed: 27184143
J Clin Epidemiol. 2008 Apr;61(4):331-43
pubmed: 18313557
J Neurooncol. 2019 Jul;143(3):495-503
pubmed: 31089923
PLoS Med. 2012;9(5):1-12
pubmed: 22629234
PLoS One. 2019 Aug 22;14(8):e0221421
pubmed: 31437221
Brachytherapy. 2019 Jul - Aug;18(4):530-538
pubmed: 31103434
BMC Cancer. 2020 Nov 10;20(1):1084
pubmed: 33172448
Clin Genitourin Cancer. 2019 Feb;17(1):e123-e129
pubmed: 30377070
J Gastrointest Surg. 2020 Aug;24(8):1843-1851
pubmed: 31385172
Neurosurgery. 2019 Jul 1;85(1):E83-E91
pubmed: 30476188
Int J Med Inform. 2019 Aug;128:79-86
pubmed: 31103449
BMC Med. 2010 Mar 30;8:20
pubmed: 20353578
Stud Health Technol Inform. 2019 Aug 21;264:1588-1589
pubmed: 31438245
Cardiovasc Intervent Radiol. 2019 Dec;42(12):1751-1759
pubmed: 31482338
Ann Surg Oncol. 2019 Nov;26(12):3955-3961
pubmed: 31392528
Sci Rep. 2019 May 6;9(1):6994
pubmed: 31061433
PLoS One. 2021 Apr 16;16(4):e0250370
pubmed: 33861809
Can Assoc Radiol J. 2019 Nov;70(4):344-353
pubmed: 31522841
Eur Heart J. 2003 Jun;24(11):987-1003
pubmed: 12788299
J Appl Biomed. 2019 Mar;17(1):75
pubmed: 34907749
Thorax. 2020 Aug;75(8):661-668
pubmed: 32631933
Ann Intern Med. 2015 Jan 6;162(1):W1-73
pubmed: 25560730
Int J Med Inform. 2021 Jul;151:104484
pubmed: 33991886
BMJ Open. 2019 Apr 24;9(4):e025611
pubmed: 31023756
J Gastrointest Surg. 2020 May;24(5):1165-1172
pubmed: 31468331
BMJ. 2009 Jun 29;338:b2393
pubmed: 19564179
Sci Rep. 2019 Aug 27;9(1):12384
pubmed: 31455831
PLoS Med. 2014 Oct 14;11(10):e1001744
pubmed: 25314315
BMJ Open. 2019 Aug 21;9(8):e027192
pubmed: 31439598
BMJ. 2020 Mar 18;368:m441
pubmed: 32188600
J Clin Epidemiol. 2021 May;133:53-60
pubmed: 33383128
J Clin Epidemiol. 2010 Jul;63(7):728-36
pubmed: 20346625
BMJ Open. 2015 Mar 17;5(3):e007825
pubmed: 25783428
Clin Breast Cancer. 2019 Feb;19(1):58-62
pubmed: 30197244
Ann Intern Med. 2015 Jan 6;162(1):55-63
pubmed: 25560714
Eur Urol. 2019 Jun;75(6):901-907
pubmed: 30318331
J Womens Health (Larchmt). 2014 Sep;23(9):746-52
pubmed: 25115368
World Neurosurg. 2018 Dec 28;:
pubmed: 30597279
Am J Kidney Dis. 2015 Dec;66(6):1024-32
pubmed: 26123861
Ann R Coll Surg Engl. 2015 Mar;97(2):137-9
pubmed: 25723691
Dig Dis Sci. 2019 Aug;64(8):2078-2087
pubmed: 31055722
J Biomed Inform. 2019 Apr;92:103117
pubmed: 30738948
Support Care Cancer. 2019 Nov;27(11):4213-4219
pubmed: 30834973
Head Neck. 2019 Jul;41(7):2291-2298
pubmed: 30706597
Neurosurgery. 2019 Sep 1;85(3):384-393
pubmed: 30113665
J Biopharm Stat. 2011 Nov;21(6):1206-31
pubmed: 22023687
Int J Gynecol Cancer. 2019 Feb;29(2):320-324
pubmed: 30718313
J Cancer. 2019 Jul 10;10(18):4189-4195
pubmed: 31413737
PLoS One. 2018 Jan 29;13(1):e0185402
pubmed: 29377923
J Clin Epidemiol. 2013 Mar;66(3):268-77
pubmed: 23116690
Cancer Prev Res (Phila). 2016 Jan;9(1):13-26
pubmed: 26464100
Sci Rep. 2019 Jul 24;9(1):10744
pubmed: 31341246
Syst Rev. 2016 Dec 5;5(1):210
pubmed: 27919275
Radiology. 2019 Jan;290(1):254-261
pubmed: 30299233
BMC Med Res Methodol. 2020 Feb 5;20(1):22
pubmed: 32024484
JAMA Dermatol. 2019 Nov 1;155(11):1277-1283
pubmed: 31483437
Med Phys. 2019 Feb;46(2):1054-1063
pubmed: 30499597
BMC Med Res Methodol. 2014 Dec 22;14:137
pubmed: 25532820
Virchows Arch. 2019 Oct;475(4):489-497
pubmed: 31422502
Gastroenterol Res Pract. 2019 Apr 01;2019:8321942
pubmed: 31065263
Stat Med. 2016 Oct 15;35(23):4124-35
pubmed: 27193918
J Card Fail. 2017 Sep;23(9):680-687
pubmed: 28336380
Sci Rep. 2019 Apr 11;9(1):5944
pubmed: 30976047
BMC Cancer. 2019 Mar 8;19(1):210
pubmed: 30849954
Acta Neurochir (Wien). 2019 May;161(5):1003-1011
pubmed: 30859321
Br J Surg. 2007 Jul;94(7):860-5
pubmed: 17380562
N Engl J Med. 2017 Jun 29;376(26):2507-2509
pubmed: 28657867
Health Informatics J. 2019 Sep;25(3):878-891
pubmed: 28927314
J Gynecol Oncol. 2019 Jul;30(4):e65
pubmed: 31074247
Stud Health Technol Inform. 2019 Aug 21;264:438-441
pubmed: 31437961
Science. 2015 Jul 17;349(6245):255-60
pubmed: 26185243
BMC Cancer. 2019 Mar 14;19(1):230
pubmed: 30871490
J Med Syst. 2019 May 24;43(7):201
pubmed: 31127444
BMC Cancer. 2019 Jun 21;19(1):610
pubmed: 31226956
Front Endocrinol (Lausanne). 2019 May 08;10:288
pubmed: 31139148
J Clin Epidemiol. 2021 Oct;138:60-72
pubmed: 34214626
BMC Med. 2011 Sep 08;9:103
pubmed: 21902820
CMAJ. 2012 Aug 7;184(11):1265-9
pubmed: 22371511
PLoS One. 2019 Jun 19;14(6):e0218283
pubmed: 31216304
Cancers (Basel). 2019 Apr 30;11(5):
pubmed: 31052270
Pancreatology. 2019 Sep;19(6):866-872
pubmed: 31375433
BMJ. 2020 Mar 25;368:m689
pubmed: 32213531
Neurosurgery. 2019 Oct 1;85(4):E671-E681
pubmed: 30869143
JAMA Otolaryngol Head Neck Surg. 2019 Dec 1;145(12):1115-1120
pubmed: 31045212

Auteurs

Paula Dhiman (P)

Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK. paula.dhiman@csm.ox.ac.uk.
NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK. paula.dhiman@csm.ox.ac.uk.

Jie Ma (J)

Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.

Constanza L Andaur Navarro (CL)

Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Benjamin Speich (B)

Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
Basel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.

Garrett Bullock (G)

Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK.

Johanna A A Damen (JAA)

Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Lotty Hooft (L)

Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Shona Kirtley (S)

Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.

Richard D Riley (RD)

Centre for Prognosis Research, School of Medicine, Keele University, Staffordshire, ST5 5BG, UK.

Ben Van Calster (B)

Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands.
EPI-centre, KU Leuven, Leuven, Belgium.

Karel G M Moons (KGM)

Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Gary S Collins (GS)

Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH