Oxidation of the Mycobacterium tuberculosis key virulence factor protein tyrosine phosphatase A (MptpA) reduces its phosphatase activity.

Mycobacterium tuberculosis cysteine-redox regulation nuclear magnetic resonance spectroscopy protein oxidation protein tyrosine phosphatase reactive oxygen species

Journal

FEBS letters
ISSN: 1873-3468
Titre abrégé: FEBS Lett
Pays: England
ID NLM: 0155157

Informations de publication

Date de publication:
06 2022
Historique:
revised: 31 03 2022
received: 01 03 2022
accepted: 01 04 2022
pubmed: 10 4 2022
medline: 30 6 2022
entrez: 9 4 2022
Statut: ppublish

Résumé

The Mycobacterium tuberculosis tyrosine-specific phosphatase MptpA and its cognate kinase PtkA are prospective targets for anti-tuberculosis drugs as they interact with the host defense response within the macrophages. Although both are structurally well-characterized, the functional mechanism regulating their activity remains poorly understood. Here, we investigate the effect of post-translational oxidation in regulating the function of MptpA. Treatment of MptpA with H

Identifiants

pubmed: 35397176
doi: 10.1002/1873-3468.14348
doi:

Substances chimiques

Bacterial Proteins 0
MptpA protein, Mycobacterium tuberculosis 0
Virulence Factors 0
Tyrosine 42HK56048U
Protein Tyrosine Phosphatases EC 3.1.3.48
Cysteine K848JZ4886

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1503-1515

Informations de copyright

© 2022 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

Références

World Health Organization. Tuberculosis: key facts. Geneva: World Health Organisation; 2020.
World Health Organization. The Top 10 causes of death. Geneva: World Health Organisation; 2018. p. 1-7.
Behr MA, Edelstein PH, Ramakrishnan L. Revisiting the timetable of tuberculosis. BMJ. 2018;362:k2738. https://doi.org/10.1136/bmj.k2738
Cohen A, Mathiasen VD, Schön T, Wejse C. The global prevalence of latent tuberculosis: a systematic review and meta-analysis. Eur Respir J. 2019;54:1900655. https://doi.org/10.1183/13993003.00655-2019
World Health Organization. Tuberculosis: multidrug-resistant tuberculosis (MDR-TB). Geneva: World Health Organisation; 2018.
Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, et al. Tuberculosis. Nat Rev Dis Prim. 2016;2:16076. https://doi.org/10.1038/nrdp.2016.76
Barczak AK, Hung DT. Productive steps toward an antimicrobial targeting virulence. Curr Opin Microbiol. 2009;12:490-6. https://doi.org/10.1016/j.mib.2009.06.012
Dickey SW, Cheung GYC, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov. 2017;16:457-71. https://doi.org/10.1038/nrd.2017.23
Allen RC, Popat R, Diggle SP, Brown SP. Targeting virulence: can we make evolution-proof drugs? Nat Rev Microbiol. 2014;12:300-8. https://doi.org/10.1038/nrmicro3232
Sharma AK, Dhasmana N, Dubey N, Kumar N, Gangwal A, Gupta M, et al. Bacterial virulence factors: secreted for survival. Indian J Microbiol. 2017;57:1-10. https://doi.org/10.1007/s12088-016-0625-1
Tomioka H. New approaches to tuberculosis-novel drugs based on drug targets related to toll-like receptors in macrophages. Curr Pharm Des. 2014;20:4404-17. https://doi.org/10.2174/1381612819666131118163331
Kim D.-H, Kang S-M, Lee B-J. Solution NMR studies of mycobacterium tuberculosis proteins for antibiotic target discovery. Molecules. 2017;22(9):1447. https://doi.org/10.3390/molecules22091447
Queval CJ, Brosch R, Simeone R. The macrophage: a disputed fortress in the battle against mycobacterium tuberculosis. Front Microbiol. 2017;8:2284.
Rankine-Wilson LI, Shapira T, Sao Emani C, Av-Gay Y. From infection niche to therapeutic target: the intracellular lifestyle of Mycobacterium tuberculosis. Microbiology, 2021;167(4):1041. https://doi.org/10.1099/mic.0.001041
Wong D, Chao JD, Av-Gay Y. Mycobacterium tuberculosis-secreted phosphatases: from pathogenesis to targets for TB drug development. Trends Microbiol. 2013;21:100-9. https://doi.org/10.1016/j.tim.2012.09.002
Bach H, Papavinasasundaram KG, Wong D, Hmama Z, Av-Gay Y. Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe. 2008;3:316-22. https://doi.org/10.1016/j.chom.2008.03.008
Wong D, Bach H, Sun J, Hmama Z, Av-Gay Y. Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. Proc Natl Acad Sci. 2011;108:19371-6. https://doi.org/10.1073/pnas.1109201108
Bach H, Wong D, Av-Gay Y. Mycobacterium tuberculosis PtkA is a novel protein tyrosine kinase whose substrate is PtpA. Biochem J. 2009;420:155-62. https://doi.org/10.1042/bj20090478
Wong D, Li W, Chao JD, Zhou P, Narula G, Tsui C, et al. Protein tyrosine kinase, PtkA, is required for Mycobacterium tuberculosis growth in macrophages. Sci Rep. 2018;8:155. https://doi.org/10.1038/s41598-017-18547-9
Chao JD, Wong D, Av-Gay Y. Microbial protein-tyrosine kinases. J Biol Chem. 2014;289:9463-72. https://doi.org/10.1074/jbc.R113.520015
Stehle T, Sreeramulu S, Löhr F, Richter C, Saxena K, Jonker HRA, et al. The Apo-structure of the low molecular weight protein-tyrosine phosphatase A (MptpA) from mycobacterium tuberculosis allows for better target-specific drug development. J Biol Chem. 2012;287:34569-82. https://doi.org/10.1074/jbc.M112.399261
Niesteruk A, Jonker HRA, Richter C, Linhard V, Sreeramulu S, Schwalbe H. The domain architecture of PtkA, the first tyrosine kinase from Mycobacterium tuberculosis, differs from the conventional kinase architecture. J Biol Chem. 2018;293:11823-36. https://doi.org/10.1074/jbc.RA117.000120
Niesteruk A, Hutchison M, Sreeramulu S, Jonker HRA, Richter C, Abele R, et al. Structural characterization of the intrinsically disordered domain of Mycobacterium tuberculosis protein tyrosine kinase A. FEBS Lett. 2018;592:1233-45. https://doi.org/10.1002/1873-3468.13022
Madhurantakam C, Chavali VRM, Das AK. Analyzing the catalytic mechanism of MPtpA: a low molecular weight protein tyrosine phosphatase from Mycobacterium tuberculosis through site-directed mutagenesis. Proteins Struct Funct Bioinforma. 2008;71:706-14. https://doi.org/10.1002/prot.21816
Zhou P, Wong D, Li W, Xie J, Av-Gay Y. Phosphorylation of Mycobacterium tuberculosis protein tyrosine kinase A PtkA by Ser/Thr protein kinases. Biochem Biophys Res Commun. 2015;467:421-6. https://doi.org/10.1016/j.bbrc.2015.09.124
Zhou P, Li W, Wong D, Xie J, Av-Gay Y. Phosphorylation control of protein tyrosine phosphatase A activity in Mycobacterium tuberculosis. FEBS Lett. 2015;589:326-31. https://doi.org/10.1016/j.febslet.2014.12.015
Zhang ZY, Wang Y, Dixon JE. Dissecting the catalytic mechanism of protein-tyrosine phosphatases. Proc Natl Acad Sci. U. S. A. 1994;91:1624-7. https://doi.org/10.1073/pnas.91.5.1624
Monteiro HP, Arai RJ, Travassos LR. Protein tyrosine phosphorylation and protein tyrosine nitration in redox signaling. Antioxid Redox Signal. 2008;10:843-89. https://doi.org/10.1089/ars.2007.1853
Alcock LJ, Perkins MV, Chalker JM. Chemical methods for mapping cysteine oxidation. Chem Soc Rev. 2018;47:231-68.
van Montfort RLM, Congreve M, Tisi D, Carr R, Jhoti H. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature. 2003;423:773-7. https://doi.org/10.1038/nature01681
Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24:R453-62. https://doi.org/10.1016/j.cub.2014.03.034
Kehm R, Baldensperger T, Raupbach J, Höhn A. Protein oxidation-formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biol. 2021;42:101901. https://doi.org/10.1016/j.redox.2021.101901
Tanner JJ, Parsons ZD, Cummings AH, Zhou H, Gates KS. Redox regulation of protein tyrosine phosphatases: structural and chemical aspects. Antioxid Redox Signal. 2011;15:77-97. https://doi.org/10.1089/ars.2010.3611
Finkel T. Oxidant signals and oxidative stress. Curr Opin Cell Biol. 2003;15:247-54. https://doi.org/10.1016/S0955-0674(03)00002-4
Davies MJ. Protein oxidation and peroxidation. Biochem J. 2016;473:805-25. https://doi.org/10.1042/BJ20151227
Hoshi T, Heinemann S. Regulation of cell function by methionine oxidation and reduction. J Physiol. 2001;531(Pt 1):1-11. https://doi.org/10.1111/j.1469-7793.2001.0001j.x
Parsons ZD, Gates KS. Thiol-dependent recovery of catalytic activity from oxidized protein tyrosine phosphatases. Biochemistry. 2013;52:6412-23. https://doi.org/10.1021/bi400451m
Persson C, Sjöblom T, Groen A, Kappert K, Engström U, Hellman U, et al. Preferential oxidation of the second phosphatase domain of receptor-like PTP-α revealed by an antibody against oxidized protein tyrosine phosphatases. Proc Natl Acad Sci. 2004;101(7):1886-91. https://doi.org/10.1073/pnas.0304403101
Chung HS, Wang S-B, Venkatraman V, Murray CI, Van Eyk JE. Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system. Circ Res. 2013;112:382-92. https://doi.org/10.1161/CIRCRESAHA.112.268680
Paulsen CE, Carroll KS. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev. 2013;113:4633-79. https://doi.org/10.1021/cr300163e
Jönsson TJ, Murray MS, Johnson LC, Lowther WT. Reduction of cysteine sulfinic acid in peroxiredoxin by sulfiredoxin proceeds directly through a sulfinic phosphoryl ester intermediate. J Biol Chem. 2008;283:23846-51. https://doi.org/10.1074/jbc.M803244200
Biteau B, Labarre J, Toledano MB. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature. 2003;425:980-4. https://doi.org/10.1038/nature02075
Woo HA, Jeong W, Chang T-S, Park KJ, Park SJ, Yang JS, et al. Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins. J Biol Chem. 2005;280:3125-8. https://doi.org/10.1074/jbc.C400496200
Bertoldo JB, Rodrigues T, Dunsmore L, Aprile FA, Marques MC, Rosado LA, et al. A water-bridged cysteine-cysteine redox regulation mechanism in bacterial protein tyrosine phosphatases. Chem. 2017;3:665-77. https://doi.org/10.1016/j.chempr.2017.07.009
Matiollo C, Ecco G, Menegatti ACO, Razzera G, Vernal J, Terenzi H. S-nitrosylation of Mycobacterium tuberculosis tyrosine phosphatase A (PtpA) induces its structural instability. Biochim Biophys Acta. 2013;1834:191-6. https://doi.org/10.1016/j.bbapap.2012.10.007
Zhou H, Singh H, Parsons ZD, Lewis SM, Bhattacharya S, Seiner DR, et al. The biological buffer bicarbonate/CO2 potentiates H2O2-mediated inactivation of protein tyrosine phosphatases. J Am Chem Soc. 2011;133:15803-5. https://doi.org/10.1021/ja2077137
Dupré-Crochet S, Erard M, Nüβe O. ROS production in phagocytes: why, when, and where? J Leukoc Biol. 2013;94:657-70. https://doi.org/10.1189/jlb.1012544
Stadtman ER, Levine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids. 2003;25:207-18. https://doi.org/10.1007/s00726-003-0011-2
Davies MJ, Truscott RJW. Photo-oxidation of proteins and its role in cataractogenesis. J Photochem Photobiol B Biol. 2001;63:114-25. https://doi.org/10.1016/S1011-1344(01)00208-1
Grassi L, Cabrele C. Susceptibility of protein therapeutics to spontaneous chemical modifications by oxidation, cyclization, and elimination reactions. Amino Acids. 2019;51:1409-31. https://doi.org/10.1007/s00726-019-02787-2
Baxter NJ, Williamson MP. Temperature dependence of 1H chemical shifts in proteins. J Biomol NMR. 1997;9:359-69. https://doi.org/10.1023/a:1018334207887
Crane EJ, Vervoort J, Claiborne A. 13C NMR analysis of the cysteine-sulfenic acid redox center of enterococcal NADH peroxidase. Biochemistry. 1997;36:8611-8. https://doi.org/10.1021/bi9707990
Mijakovic I, Grangeasse C, Turgay K. Exploring the diversity of protein modifications: special bacterial phosphorylation systems. FEMS Microbiol Rev. 2016;40:398-417. https://doi.org/10.1093/femsre/fuw003
Hunter T. The genesis of tyrosine phosphorylation. Cold Spring Harb Perspect Biol. 2014;6:a020644. https://doi.org/10.1101/cshperspect.a020644
Tonks NK. Redox redux: revisiting PTPs and the control of cell signaling. Cell. 2005;121:667-70. https://doi.org/10.1016/j.cell.2005.05.016
Ehrt S, Schnappinger D. Mycobacterial survival strategies in the phagosome: defense against host stresses. Cell Microbiol. 2009;11:1170-8. https://doi.org/10.1111/j.1462-5822.2009.01335.x
Klomsiri C, Karplus PA, Poole LB. Cysteine-based redox switches in enzymes. Antioxid Redox Signal. 2011;14:1065-77. https://doi.org/10.1089/ars.2010.3376

Auteurs

Anna Niesteruk (A)

Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, Institute for Organic Chemistry and Chemical Biology, Frankfurt am Main, Germany.

Sridhar Sreeramulu (S)

Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, Institute for Organic Chemistry and Chemical Biology, Frankfurt am Main, Germany.

Hendrik R A Jonker (HRA)

Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, Institute for Organic Chemistry and Chemical Biology, Frankfurt am Main, Germany.

Christian Richter (C)

Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, Institute for Organic Chemistry and Chemical Biology, Frankfurt am Main, Germany.

Harald Schwalbe (H)

Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, Institute for Organic Chemistry and Chemical Biology, Frankfurt am Main, Germany.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Humans Robotic Surgical Procedures Male Female Aged
Humans Hernias, Diaphragmatic, Congenital Case-Control Studies Prospective Studies Sweden

UK Foot and Ankle Thromboembolism (UK-FATE).

Jitendra Mangwani, Linzy Houchen-Wolloff, Karan Malhotra et al.
1.00
Humans Venous Thromboembolism Male Female United Kingdom

Classifications MeSH