Soil Heating in Fire (SheFire): A model and measurement method for estimating soil heating and effects during wildland fires.

SheFire Soil Heating in fire fire dose-response fire effects belowground fire energy fire induced mortality iButton iStake prescribed fire soil temperature modeling wildland fire

Journal

Ecological applications : a publication of the Ecological Society of America
ISSN: 1051-0761
Titre abrégé: Ecol Appl
Pays: United States
ID NLM: 9889808

Informations de publication

Date de publication:
09 2022
Historique:
revised: 22 11 2021
received: 04 05 2021
accepted: 07 01 2022
pubmed: 10 4 2022
medline: 9 9 2022
entrez: 9 4 2022
Statut: ppublish

Résumé

Fire has transformative effects on soil biological, chemical, and physical properties in terrestrial ecosystems around the world. While methods for estimating fire characteristics and associated effects aboveground have progressed in recent decades, there remain major challenges in characterizing soil heating and associated effects belowground. Overcoming these challenges is crucial for understanding how fire influences soil carbon storage, biogeochemical cycling, and ecosystem recovery. In this paper, we present a novel framework for characterizing belowground heating and effects. The framework includes (1) an open-source model to estimate fire-driven soil heating, cooling, and the biotic effects of heating across depths and over time (Soil Heating in Fire model; SheFire) and (2) a simple field method for recording soil temperatures at multiple depths using self-contained temperature sensor and data loggers (i.e., iButtons), installed along a wooden stake inserted into the soil (i.e., an iStake). The iStake overcomes many logistical challenges associated with obtaining temperature profiles using thermocouples. Heating measurements provide inputs to the SheFire model, and modeled soil heating can then be used to derive ecosystem response functions, such as heating effects on microorganisms and tissues. To validate SheFire estimates, we conducted a burn table experiment using iStakes to record temperatures that were in turn used to fit the SheFire model. We then compared SheFire predicted temperatures against measured temperatures at other soil depths. To benchmark iStake measurements against those recorded by thermocouples, we co-located both types of sensors in the burn table experiment. We found that SheFire demonstrated skill in interpolating and extrapolating soil temperatures, with the largest errors occurring at the shallowest depths. We also found that iButton sensors are comparable to thermocouples for recording soil temperatures during fires. Finally, we present a case study using iStakes and SheFire to estimate in situ soil heating during a prescribed fire and demonstrate how observed heating regimes would influence seed and tree root vascular cambium survival at different soil depths. This measurement-modeling framework provides a cutting-edge approach for describing soil temperature regimes (i.e., soil heating) through a soil profile and predicting biological responses.

Identifiants

pubmed: 35397482
doi: 10.1002/eap.2627
doi:

Substances chimiques

Soil 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2627

Informations de copyright

© 2022 The Ecological Society of America.

Références

Achat, D. L., L. Augusto, M. R. Bakker, A. Gallet-Budynek, and C. Morel. 2012. “Microbial Processes Controlling P Availability in Forest Spodosols as Affected by Soil Depth and Soil Properties.” Soil Biology and Biochemistry 44(1): 39-48. https://doi.org/10.1016/j.soilbio.2011.09.007.
Adie, H., S. Richert, K. P. Kirkman, and M. J. Lawes. 2011. “The Heat Is On: Frequent High Intensity Fire in Bracken (Pteridium aquilinum) Drives Mortality of the Sprouting Tree Protea Caffra in Temperate Grasslands.” Plant Ecology 212(12): 2013-22.
Aznar, J. M., J. A. González-Pérez, D. Badía-Villas, and C. Martí Dalmau. 2016. “At What Depth Are the Properties of Gypseous Forest Soil Affected by Fire?” Land Degradation and Development 27(5): 1344-53. https://doi.org/10.1002/ldr.2258.
Badía-Villas, D., J. A. González-Pérez, J. M. Aznar, B. Arjona-Gracia, and C. Martí-Dalmau. 2014. “Changes in Water Repellency, Aggregation and Organic Matter of a Mollic Horizon Burned in Laboratory: Soil Depth Affected by Fire.” Geoderma 213(January): 400-7. https://doi.org/10.1016/j.geoderma.2013.08.038.
Balesdent, J., I. Basile-Doelsch, J. Chadoeuf, S. Cornu, D. Derrien, Z. Fekiacova, and C. Hatté. 2018. “Atmosphere-Soil Carbon Transfer as a Function of Soil Depth.” Nature 559(7715): 599-602. https://doi.org/10.1038/s41586-018-0328-3.
Barnett, C. R. 2002. “BFD Curve: A New Empirical Model for Fire Compartment Temperatures.” Fire Safety Journal 37(5): 437-63. https://doi.org/10.1016/S0379-7112(02)00006-1.
Bova, A. S., and M. B. Dickinson. 2008. “Beyond ‘Fire Temperatures’: Calibrating Thermocouple Probes and Modeling their Response to Surface Fires in Hardwood Fuels.” Canadian Journal of Forest Research 38(5): 1008-20. https://doi.org/10.1139/X07-204.
Brady, M., and E. Hanan. 2022. “SheFire.” OSF. https://doi.org/10.17605/OSF.IO/HXYCT.
Bristow, K. L. 1998. “Measurement of Thermal Properties and Water Content of Unsaturated Sandy Soil Using Dual-Probe Heat-Pulse Probes.” Agricultural and Forest Meteorology 89(2): 75-84. https://doi.org/10.1016/S0168-1923(97)00065-8.
Busse, M. D., C. J. Shestak, and K. R. Hubbert. 2013. “Soil Heating during Burning of Forest Slash Piles and Wood Piles.” International Journal of Wildland Fire 22(6): 786-96. https://doi.org/10.1071/WF12179.
Busse, M. D., C. J. Shestak, K. R. Hubbert, and E. E. Knapp. 2010. “Soil Physical Properties Regulate Lethal Heating during Burning of Woody Residues.” Soil Science Society of America Journal 74(3): 947-55. https://doi.org/10.2136/sssaj2009.0322.
Caldwell, C. R. 1993. “Estimation and Analysis of Cucumber (Cucumis sativus L.) Leaf Cellular Heat Sensitivity.” Plant Physiology 101(3): 939-45. https://doi.org/10.1104/pp.101.3.939.
Campbell, G. S., J. D. Jungbauer, Jr., K. L. Bristow, and R. D. Hungerford. 1995. “Soil Temperature and Water Content Beneath a Surface Fire.” Soil Science 159: 363-74. https://doi.org/10.1097/00010694-199506000-00001.
Choczynska, J., and E. A. Johnson. 2009. “A Soil Heat and Water Transfer Model to Predict Belowground Grass Rhizome Bud Death in a Grass Fire.” Journal of Vegetation Science 20(2): 277-87. https://doi.org/10.1111/j.1654-1103.2009.05757.x.
DeBano, L. F. 2000. “The Role of Fire and Soil Heating on Water Repellency in Wildland Environments: A Review.” Journal of Hydrology 231: 195-206. https://doi.org/10.1016/S0022-1694(00)00194-3.
Dickinson, M. B., J. Jolliff, and A. S. Bova. 2005. “Vascular Cambium Necrosis in Forest Fires: Using Hyperbolic Temperature Regimes to Estimate Parameters of a Tissue-Response Model.” Australian Journal of Botany 52(6): 757-63. https://doi.org/10.1071/BT03111.
Dickinson, M. B., and E. A. Johnson. 2004. “Temperature-Dependent Rate Models of Vascular Cambium Cell Mortality.” Canadian Journal of Forest Research 34(3): 546-59. https://doi.org/10.1139/x03-223.
Dickinson, M., L. Loncar, A. Reiner, S. Dailey, J. Bednarczyk, C. Drake, J. Gordon, et al. 2019. “2019 Walker Fire, Plumas National Forest, Fire Behavior Assessment Team (FBAT) Report.” US Forest Service, 34. https://www.fs.fed.us/adaptivemanagement/reports/fbat/2019_FBATReport_WalkerFire_10112019_Final.pdf.
Doerr, S., C. Santin, J. Reardon, J. Mataix-Solera, C. Stoof, R. Bryant, J. Miesel, and D. Badia. 2017. “Soil Heating during Wildfires and Prescribed Burns: A Global Evaluation Based on Existing and New Data” 19 (April): 17957. https://meetingorganizer.copernicus.org/EGU2017/EGU2017-17957-1.pdf.
Giovannini, C., S. Lucchesi, and M. Giachetti. 1990. “Effects of Heating on Some Chemical Parameters Related to Soil Fertility and Plant Growth.” Soil Science 149(June): 344-50. https://doi.org/10.1097/00010694-199006000-00005.
Giovannini, G., and S. Lucchesi. 1997. “Modification Induced in Soil Physico-Chemical Parameters by Experimental Fires at Different Intensities.” Soil Science 162(7): 479-86.
González-Pérez, J. A., F. J. González-Vila, G. Almendros, and H. Knicker. 2004. “The Effect of Fire on Soil Organic Matter-A Review.” Environment International 30(6): 855-70. https://doi.org/10.1016/j.envint.2004.02.003.
Goss, M., D. L. Swain, J. T. Abatzoglou, A. Sarhadi, C. A. Kolden, A. Park Williams, and N. S. Diffenbaugh. 2020. “Climate Change Is Increasing the Likelihood of Extreme Autumn Wildfire Conditions across California.” Environmental Research Letters 15(9): 094016. https://doi.org/10.1088/1748-9326/ab83a7.
Grau-Andrés, R., G. Matt Davies, E. Susan Waldron, M. Scott, and A. Gray. 2017. “Leaving Moss and Litter Layers Undisturbed Reduces the Short-Term Environmental Consequences of Heathland Managed Burns.” Journal of Environmental Management 204(December): 102-10. https://doi.org/10.1016/j.jenvman.2017.08.017.
Gustine, R. N., E. J. Hanan, P. R. Robichaud, and W. J. Elliot. 2021. “From Burned Slopes to Streams: How Wildfire Affects Nitrogen Cycling and Retention in Forests and Fire-Prone Watersheds.” Biogeochemistry 1-18: 51-68. https://doi.org/10.1007/s10533-021-00861-0.
Hanan, E. J., C. M. D'Antonio, D. A. Roberts, and J. P. Schimel. 2016. “Factors Regulating Nitrogen Retention during the Early Stages of Recovery from Fire in Coastal Chaparral Ecosystems.” Ecosystems 19(5): 910-26. https://doi.org/10.1007/s10021-016-9975-0.
Hanan, E. J., J. Ren, C. L. Tague, C. A. Kolden, J. T. Abatzoglou, R. R. Bart, M. C. Kennedy, M. Liu, and J. C. Adam. 2021. “How Climate Change and Fire Exclusion Drive Wildfire Regimes at Actionable Scales.” Environmental Research Letters 16(2): 024051. https://doi.org/10.1088/1748-9326/abd78e.
Hanan, E. J., J. P. Schimel, K. Dowdy, and C. M. D'Antonio. 2016. “Effects of Substrate Supply, PH, and Char on Net Nitrogen Mineralization and Nitrification along a Wildfire-Structured Age Gradient in Chaparral.” Soil Biology and Biochemistry 95(April): 87-99. https://doi.org/10.1016/j.soilbio.2015.12.017.
Hartford, R. A., and W. H. Frandsen. 1992. “When It's Hot, It's Hot… Or Maybe It's Not! (Surface Flaming May Not Portend Extensive Soil Heating).” International Journal of Wildland Fire 2(3): 139-44. https://doi.org/10.1071/wf9920139.
Hiers, Q. A., M. L. Treadwell, M. B. Dickinson, K. L. Kavanagh, A. G. Lodge, H. D. Starns, D. R. Tolleson, D. Twidwell, C. L. Wonkka, and W. E. Rogers. 2019. “Grass Bud Bank Responses to Fire in a Semi-Arid Savanna System.” Ecology & Evolution 11: 6620-33. https://doi.org/10.1002/ece3.7516.
Homann, P. S., B. T. Bormann, R. L. Darbyshire, and B. A. Morrissette. 2011. “Forest Soil Carbon and Nitrogen Losses Associated with Wildfire and Prescribed Fire.” Soil Science Society of America Journal 75(5): 1926-34. https://doi.org/10.2136/sssaj2010-0429.
Hudak, A. T., P. Morgan, M. J. Bobbitt, A. M. S. Smith, S. A. Lewis, L. B. Lentile, P. R. Robichaud, J. T. Clark, and R. A. McKinley. 2007. “The Relationship of Multispectral Satellite Imagery to Immediate Fire Effects.” Fire Ecology 3(1): 64-90. https://doi.org/10.4996/fireecology.0301064.
Ichoku, C., R. Kahn, and M. Chin. 2012. “Satellite Contributions to the Quantitative Characterization of Biomass Burning for Climate Modeling.” Atmospheric Research 111(July): 1-28. https://doi.org/10.1016/j.atmosres.2012.03.007.
Iverson, L. R., D. A. Yaussy, J. Rebbeck, T. F. Hutchinson, R. P. Long, and A. M. Prasad. 2004. “A Comparison of Thermocouples and Temperature Paints to Monitor Spatial and Temporal Characteristics of Landscape-Scale Prescribed Fires.” International Journal of Wildland Fire 13: 311-22. https://doi.org/10.1071/WF03063.
Johnson, E. A. 1985. “Disturbance: The Process and the Response. An Epilogue.” Canadian Journal of Forest Research 15: 292-3. https://doi.org/10.1139/x85-047.
Keeley, J. E. 2009. “Fire Intensity, Fire Severity and Burn Severity: A Brief Review and Suggested Usage.” International journal of wildland fire 18(1): 116-26.
Kennard, D. K., K. W. Outcalt, D. Jones, and J. J. O'Brien. 2005. “Comparing Techniques for Estimating Flame Temperature of Prescribed Fires.” Fire Ecology 1(1): 75-84. https://doi.org/10.4996/fireecology.0101075.
Kersten, M. S. 1949. Thermal Properties of Soils, Vol 52. Saint Paul, MN: University of Minnesota, Institute of Technology http://conservancy.umn.edu/handle/11299/124271.
Klopatek, J. M., C. C. Klopatek, and L. F. DeBano. 1990. “Potential Variation of Nitrogen Transformations in Pinyon-Juniper Ecosystems Resulting from Burning.” Biology and Fertility of Soils 10(1): 35-44. https://doi.org/10.1007/BF00336122.
Kokaly, R. F., B. W. Rockwell, S. L. Haire, and T. V. V. King. 2007. “Characterization of Post-Fire Surface Cover, Soils, and Burn Severity at the Cerro Grande Fire, New Mexico, Using Hyperspectral and Multispectral Remote Sensing.” Remote Sensing of Environment 106(3): 305-25. https://doi.org/10.1016/j.rse.2006.08.006.
Kramer, M. G., K. Lajtha, and A. K. Aufdenkampe. 2017. “Depth Trends of Soil Organic Matter C:N and 15N Natural Abundance Controlled by Association with Minerals.” Biogeochemistry 136(3): 237-48. https://doi.org/10.1007/s10533-017-0378-x.
Kremens, R. L., A. M. S. Smith, and M. B. Dickinson. 2010. “Fire Metrology: Current and Future Directions in Physics-Based Measurements.” Fire Ecology 6(1): 13-35. https://doi.org/10.4996/fireecology.0601013.
Kreye, J. K., J. M. Varner, and L. N. Kobziar. 2020. “Long-Duration Soil Heating Resulting from Forest Floor Duff Smoldering in Longleaf Pine Ecosystems.” Forest Science 66: 291-303. https://doi.org/10.1093/forsci/fxz089.
Kreye, J. K., L. N. Kobziar, and W. C. Zipperer. 2013. “Effects of Fuel Load and Moisture Content on Fire Behaviour and Heating in Masticated Litter-Dominated Fuels.” International Journal of Wildland Fire 22(4): 440-5. https://doi.org/10.1071/WF12147.
Lentile, L. B, P. Morgan, C. Hardy, A. T Hudak, R. Means, R. Ottmar, P. Robichaud, E. Sutherland, F. Way, and S. Lewis. 2007. “Lessons Learned From Rapid Response Research on Wildland Fires.” U.S. Department of Agriculture: Forest Service, National Agroforestry Center, 10. https://www.fs.fed.us/pnw/fera/publications/fulltext/lentileetal2007.pdf.
Lorenz, R. W. 1939. “High Temperature Tolerance of Forest Trees.” University of Minnesota: Agricultural Experiment Station. Technical Bulletin 141. https://conservancy.umn.edu/bitstream/handle/11299/204074/mn1000_agexpstn_tb_141.pdf?sequence=1.
Lutes, D. C. 2017. “FOFEM 6.4: First Order Fire Effects Model User Guide.” Missoula, MT: U.S. Department of Agriculture: Forest Service, Rocky Mountain Research Station, Fire Modeling Institute.
MacLean, J. D. 1941. Thermal Conductivity of Wood. Madison, WI: Forest Products Laboratory: Heating, Piping & Air Conditioning. https://www.fpl.fs.fed.us/documnts/pdf1941/macle41a.pdf.
Martin, R. E., C. T. Cushwa, and R. L. Miller. 1969. “Fire as a Physical Factor in Wildland Management.” In Proceedings Annual [9th] Tall Timbers Fire Ecology Conference 9: 271-88. https://www.fs.usda.gov/treesearch/pubs/42405.
Martin, R. E., and C. T. Cushwa. 1966. “Effects of Heat and Moisture on Leguminous Seed.” In Proceedings Annual [5th] Tall Timbers Fire Ecology Conference 5:159-175. https://talltimbers.org/wp-content/uploads/2014/03/MartinandCushwa1966_op.pdf.
HananMaryKBrady and Erin. 2021. “Fire-and-Dryland-Ecosystems-Lab/SheFireModel: SheFire version v1.0.0 (v1.0.0).” Zenodo. https://doi.org/10.5281/zenodo.4694828.
Massman, W. J. 2015. “A Non-Equilibrium Model for Soil Heating and Moisture Transport during Extreme Surface Heating: The Soil (Heat-Moisture-Vapor) HMV-Model Version 1.” Geoscientific Model Development 8(11): 3659-80. https://doi.org/10.5194/gmd-8-3659-2015.
Massman, W. J. 2021. “The Challenges of an In Situ Validation of a Nonequilibrium Model of Soil Heat and Moisture Dynamics during Fires.” Hydrology and Earth System Sciences 25(2): 685-709. https://doi.org/10.5194/hess-25-685-2021.
Massman, W. J., J. M. Frank, and S. J. Mooney. 2010. “Advancing Investigation and Physical Modeling of First-Order Fire Effects on Soils.” Fire Ecology 6(1): 36-54. https://doi.org/10.4996/fireecology.0601036.
Maxim Integrated. 2002. Book of IButton Standards. San Jose, CA: Maxim Integrated Products, Inc. https://www.maximintegrated.com/en/design/technical-documents/app-notes/9/937.html.
Michaletz, S. T., and E. A. Johnson. 2008. “A Biophysical Process Model of Tree Mortality in Surface Fires.” Canadian Journal of Forest Research 38(7): 2013-29. https://doi.org/10.1139/X08-024.
Michaletz, S. T., and E. A. Johnson. 2007. “How Forest Fires Kill Trees: A Review of the Fundamental Biophysical Processes.” Scandinavian Journal of Forest Research 22(6): 500-15. https://doi.org/10.1080/02827580701803544.
Miesel, J., A. Reiner, C. Ewell, B. Maestrini, and M. Dickinson. 2018. “Quantifying Changes in Total and Pyrogenic Carbon Stocks across Fire Severity Gradients Using Active Wildfire Incidents.” Frontiers in Earth Science 6. https://doi.org/10.3389/feart.2018.00041.
Moran, C. J., C. A. Seielstad, M. R. Cunningham, V. Hoff, R. A. Parsons, L. L. Queen, K. Sauerbrey, and T. Wallace. 2019. “Deriving Fire Behavior Metrics from UAS Imagery.” Fire 2(2): 36. https://doi.org/10.3390/fire2020036.
Morgan, P., R. E. Keane, G. K. Dillon, T. B. Jain, A. T. Hudak, E. C. Karau, P. G. Sikkink, Z. A. Holden, and E. K. Strand. 2014. “Challenges of Assessing Fire and Burn Severity Using Field Measures, Remote Sensing and Modelling.” International Journal of Wildland Fire 23(8): 1045-60. https://doi.org/10.1071/WF13058.
Murphy, K. A., J. H. Reynolds, and J. M. Koltun. 2008. “Evaluating the Ability of the Differenced Normalized Burn Ratio (DNBR) to Predict Ecologically Significant Burn Severity in Alaskan Boreal Forests.” International Journal of Wildland Fire 17(4): 490-9. https://doi.org/10.1071/WF08050.
Neary, D. G., C. C. Klopatek, L. F. DeBano, and P. F. Ffolliott. 1999. “Fire Effects on Belowground Sustainability: A Review and Synthesis.” Forest Ecology and Management 122(September): 51-71. https://doi.org/10.1016/S0378-1127(99)00032-8.
Nelson, R. M. 1952. Observations on Heat Tolerance of Southern Pine Needles. U.S. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station. https://www.fs.usda.gov/treesearch/pubs/54149.
Ottmar, R. D., J. Kevin Hiers, B. W. Butler, C. B. Clements, M. B. Dickinson, A. T. Hudak, J. J. O'Brien, et al. 2016. “Measurements, Datasets and Preliminary Results from the RxCADRE Project - 2008, 2011 and 2012.” International Journal of Wildland Fire 25(1): 1-9. https://doi.org/10.1071/WF14161.
Pellegrini, A. F. A., A. Ahlström, S. E. Hobbie, P. B. Reich, L. P. Nieradzik, A. Carla Staver, B. C. Scharenbroch, et al. 2018. “Fire Frequency Drives Decadal Changes in Soil Carbon and Nitrogen and Ecosystem Productivity.” Nature 553(7687): 194-8. https://doi.org/10.1038/nature24668.
Pereira, P., A. Cerdà, X. Úbeda, J. Mataix-Solera, and G. Rein. 2019. Fire Effects on Soil Properties. Clayton South Victoria, Australia; CSIRO Publishing.
Pingree, M. R. A., and L. N. Kobziar. 2019. “The Myth of the Biological Threshold: A Review of Biological Responses to Soil Heating Associated with Wildland Fire.” Forest Ecology and Management 432(January): 1022-9. https://doi.org/10.1016/j.foreco.2018.10.032.
Quigley, K. M., R. E. Wildt, B. R. Sturtevant, R. K. Kolka, M. B. Dickinson, C. C. Kern, D. M. Donner, and J. R. Miesel. 2019. “Fuels, Vegetation, and Prescribed Fire Dynamics Influence Ash Production and Characteristics in a Diverse Landscape under Active Pine Barrens Restoration.” Fire Ecology 15: 1-15. https://doi.org/10.1186/s42408-018-0015-7.
Quigley, K. M., R. Kolka, B. R. Sturtevant, M. B. Dickinson, C. C. Kern, D. M. Donner, and J. R. Miesel. 2020. “Prescribed Burn Frequency, Vegetation Cover, and Management Legacies Influence Soil Fertility: Implications for Restoration of Imperiled Pine Barrens Habitat.” Forest Ecology and Management 470: 118163. https://doi.org/10.1016/j.foreco.2020.118163.
Ramcharan, A., T. Hengl, T. Nauman, C. Brungard, S. Waltman, S. Wills, and J. Thompson. 2018. “Soil Property and Class Maps of the Conterminous United States at 100-Meter Spatial Resolution.” Soil Science Society of America Journal 82(1): 186-201. https://doi.org/10.2136/sssaj2017.04.0122.
Regan, K., B. Stempfhuber, M. Schloter, F. Rasche, D. Prati, L. Philippot, R. S. Boeddinghaus, E. Kandeler, and S. Marhan. 2017. “Spatial and Temporal Dynamics of Nitrogen Fixing, Nitrifying and Denitrifying Microbes in an Unfertilized Grassland Soil.” Soil Biology and Biochemistry 109(June): 214-26. https://doi.org/10.1016/j.soilbio.2016.11.011.
Robichaud, P. R. 2000. “Fire Effects on Infiltration Rates after Prescribed Fire in Northern Rocky Mountain Forests, USA.” Journal of Hydrology 231-232(May): 220-9. https://doi.org/10.1016/S0022-1694(00)00196-7.
Robichaud, P., and R. E. Brown. 2019. “High Temperature Soil Probe.” United States of America Patent: US20190072434A1. https://www.freepatentsonline.com/y2019/0072434.html.
Rosenberg, B., G. Kemeny, R. C. Switzer, and T. C. Hamilton. 1971. “Quantitative Evidence for Protein Denaturation as the Cause of Thermal Death.” Nature 232(5311): 471-3. https://doi.org/10.1038/232471a0.
Schoennagel, T., J. K. Balch, H. Brenkert-Smith, P. E. Dennison, B. J. Harvey, M. A. Krawchuk, N. Mietkiewicz, et al. 2017. “Adapt to More Wildfire in Western North American Forests as Climate Changes.” Proceedings of the National Academy of Sciences USA 114(18): 4582-90. https://doi.org/10.1073/pnas.1617464114.
Smith, A. M. S., A. M. Sparks, C. A. Kolden, J. T. Abatzoglou, A. F. Talhelm, D. M. Johnson, L. Boschetti, et al. 2016. “Towards a New Paradigm in Fire Severity Research Using Dose-Response Experiments.” International Journal of Wildland Fire 25(2): 158-66. https://doi.org/10.1071/WF15130.
Smith, J. E., A. D. Cowan, and S. A. Fitzgerald. 2016. “Soil Heating during the Complete Combustion of Mega-Logs and Broadcast Burning in Central Oregon USA Pumice Soils.” International Journal of Wildland Fire 25(11): 1202-7. https://doi.org/10.1071/WF16016.
Smith, N. R., B. E. Kishchuk, and W. W. Mohn. 2008. “Effects of Wildfire and Harvest Disturbances on Forest Soil Bacterial Communities.” Applied and Environmental Microbiology 74(1): 216-24. https://doi.org/10.1128/AEM.01355-07.
Smits, K. M., E. Kirby, W. J. Massman, and L. Scott Baggett. 2016. “Experimental and Modeling Study of Forest Fire Effect on Soil Thermal Conductivity.” Pedosphere 26: 462-73. https://doi.org/10.1016/S1002-0160(15)60057-1.
Swezy, D. M., and J. K. Agee. 2011. “Prescribed-Fire Effects on Fine-Root and Tree Mortality in Old-Growth Ponderosa Pine.” Canadian Journal of Forest Research 21: 626-34. https://doi.org/10.1139/x91-086.
Twidwell, D., S. D. Fuhlendorf, C. A. Taylor Jr, and W. E. Rogers. 2013. “Refining Thresholds in Coupled Fire-Vegetation Models to Improve Management of Encroaching Woody Plants in Grasslands.” Journal of Applied Ecology 50: 603-13. https://doi.org/10.1111/1365-2664.12063.
USDA. 2016. Official Series Description - TARRANT Series. U.S. Department of Agriculture. https://soilseries.sc.egov.usda.gov/OSD_Docs/T/TARRANT.html.
Varner, M. J., F. E. Putz, J. J. O'Brien, J. Kevin Hiers, R. J. Mitchell, and D. R. Gordon. 2009. “Post-Fire Tree Stress and Growth Following Smoldering Duff Fires.” Forest Ecology and Management 258(11): 2467-74. https://doi.org/10.1016/j.foreco.2009.08.028.
Whitman, T., E. Whitman, J. Woolet, M. D. Flannigan, D. K. Thompson, and M.-A. Parisien. 2019. “Soil Bacterial and Fungal Response to Wildfires in the Canadian Boreal Forest across a Burn Severity Gradient.” Soil Biology and Biochemistry 138(November): 107571. https://doi.org/10.1016/j.soilbio.2019.107571.
Zhang, Y., H. Shen, Q. Gao, and L. Zhao. 2020. “Estimating Soil Organic Carbon and PH in Jilin Province Using Landsat and Ancillary Data.” Soil Science Society of America Journal 84(2): 556-67. https://doi.org/10.1002/saj2.20056.

Auteurs

Mary K Brady (MK)

Department of Natural Resources & Environmental Science, University of Nevada - Reno, Reno, Nevada, USA.

Matthew B Dickinson (MB)

US Forest Service, Northern Research Station, Delaware, Ohio, USA.

Jessica R Miesel (JR)

Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA.

Carissa L Wonkka (CL)

USDA, ARS, Northern Plains Agricultural Research Laboratory, Sidney, Montana, USA.

Kathleen L Kavanagh (KL)

College of Forestry, Oregon State University, Corvallis, Oregon, USA.

Alexandra G Lodge (AG)

Department of Ecosystem Science and Management, Texas A&M University, College Station, Texas, USA.

William E Rogers (WE)

Department of Ecosystem Science and Management, Texas A&M University, College Station, Texas, USA.

Heath D Starns (HD)

Department of Ecosystem Science and Management, Texas A&M AgriLife Research, Sonora, Texas, USA.

Doug R Tolleson (DR)

Department of Ecosystem Science and Management, Texas A&M AgriLife Research, Sonora, Texas, USA.

Morgan L Treadwell (ML)

Department of Rangeland, Wildlife and Fisheries Management Ecosystem Science and Management, Texas A&M AgriLife Extension Service, San Angelo, Texas, USA.

Dirac Twidwell (D)

Department of Agronomy and Horticulture, University of Nebraska at Lincoln, Lincoln, Nebraska, USA.

Erin J Hanan (EJ)

Department of Natural Resources & Environmental Science, University of Nevada - Reno, Reno, Nevada, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH