MPI-GWAS: a supercomputing-aided permutation approach for genomewide association studies.

genome-wide association study message-passing interface parallel computing supercomputing

Journal

Genomics & informatics
ISSN: 1598-866X
Titre abrégé: Genomics Inform
Pays: Korea (South)
ID NLM: 101223836

Informations de publication

Date de publication:
Mar 2022
Historique:
received: 03 01 2022
accepted: 10 02 2022
entrez: 11 4 2022
pubmed: 12 4 2022
medline: 12 4 2022
Statut: ppublish

Résumé

Permutation testing is a robust and popular approach for significance testing in genomic research that has the advantage of reducing inflated type 1 error rates; however, its computational cost is notorious in genome-wide association studies (GWAS). Here, we developed a supercomputing-aided approach to accelerate the permutation testing for GWAS, based on the message-passing interface (MPI) on parallel computing architecture. Our application, called MPI-GWAS, conducts MPI-based permutation testing using a parallel computing approach with our supercomputing system, Nurion (8,305 compute nodes, and 563,740 central processing units [CPUs]). For 107 permutations of one locus in MPI-GWAS, it was calculated in 600 s using 2,720 CPU cores. For 107 permutations of ~30,000-50,000 loci in over 7,000 subjects, the total elapsed time was ~4 days in the Nurion supercomputer. Thus, MPI-GWAS enables us to feasibly compute the permutation-based GWAS within a reason-able time by harnessing the power of parallel computing resources.

Identifiants

pubmed: 35399013
pii: gi.22001
doi: 10.5808/gi.22001
pmc: PMC9001997
doi:

Types de publication

Journal Article

Langues

eng

Pagination

e14

Subventions

Organisme : Korea Institute of Science and Technology Information
ID : K-21-L02-C10, K-20-L02-C10-S01, K-21-L02-C10-S01
Organisme : National Research Foundation of Korea
ID : 2021M3H9A203052011
Organisme : Ministry of Science and ICT
ID : N-21-NM-CA08-S01
Organisme : National Supercomputing Center with supercomputing resources including technical support
ID : TS-2021-RG-0006

Références

BMC Plant Biol. 2017 Nov 14;17(Suppl 1):190
pubmed: 29143598
Int J Epidemiol. 2017 Apr 1;46(2):e20
pubmed: 27085081
Nat Genet. 2002 Dec;32(4):650-4
pubmed: 12426569
PLoS Med. 2015 Mar 31;12(3):e1001779
pubmed: 25826379
BioData Min. 2014 Jun 14;7:9
pubmed: 24976866

Auteurs

Hyojung Paik (H)

Division of Supercomputing, Center for supercomputing application and research, Korea Institute of Science and Technology Information (KISTI), Daejeon 34141, Korea.
Department of Data and HPC Science, University of Science and Technology (UST), Daejeon, 34141, Korea.

Yongseong Cho (Y)

Division of Supercomputing, Center for supercomputing application and research, Korea Institute of Science and Technology Information (KISTI), Daejeon 34141, Korea.

Seong Beom Cho (SB)

Department of Bio-Medical Informatics, Gachon University College of Medicine, Incheon 21565, Korea.

Oh-Kyoung Kwon (OK)

Division of Supercomputing, Center for supercomputing application and research, Korea Institute of Science and Technology Information (KISTI), Daejeon 34141, Korea.

Classifications MeSH