Modulation of Spatial Memory Deficit and Hyperactivity in Dopamine Transporter Knockout Rats
ADHD model
Guanfacine (GF)
Yohimbine (YOH)
dopamine (DA)
dopamine transporter knockout (DAT-KO) rats
norepinephrine (NE)
spatial working memory
α2A-adrenoceptors
Journal
Frontiers in psychiatry
ISSN: 1664-0640
Titre abrégé: Front Psychiatry
Pays: Switzerland
ID NLM: 101545006
Informations de publication
Date de publication:
2022
2022
Historique:
received:
09
01
2022
accepted:
28
02
2022
entrez:
11
4
2022
pubmed:
12
4
2022
medline:
12
4
2022
Statut:
epublish
Résumé
Attention deficit hyperactivity disorder (ADHD) is manifested by a specific set of behavioral deficits such as hyperactivity, impulsivity, and inattention. The dopamine neurotransmitter system is postulated to be involved in the pathogenesis of ADHD. Guanfacine, a selective α2A-adrenoceptor agonist, is prescribed for ADHD treatment. ADHD also is known to be associated with impairment of multiple aspects of cognition, including spatial memory, however, it remains unclear how modulation of the norepinephrine system can affect these deficits. Hyperdopaminergic dopamine transporter knockout (DAT-KO) rats are a valuable model for investigating ADHD. The DAT-KO rats are hyperactive and deficient in spatial working memory. This work aimed to evaluate the effects of noradrenergic drugs on the fulfillment of spatial cognitive tasks by DAT-KO rats. The rats were tested in the Hebb - Williams maze during training and following noradrenergic drugs administration. The efficiency of spatial orientation was assessed as to how fast the animal finds an optimal way to the goal box. Testing in a new maze configuration allowed us to evaluate the effects of drug administration after the acquisition of the task rules. The behavioral variables such as the distance traveled, the time to reach the goal box, and the time spent in the error zones were analyzed. It has been observed that α2A-adrenoceptor agonist Guanfacine (0.25 mg/kg) had only a minimal inhibitory effect on hyperactivity of DAT-KO rats in the maze but significantly ameliorated their perseverative pattern of activity and reduced the time spent in the error zones. In contrast, α2A-adrenoceptor antagonist Yohimbine, at the dose of 1 mg/kg, increased the distance traveled by DAT-KO rats and elevated the number of perseverative reactions and the time spent in the error zones. Guanfacine caused minimal effects in wild-type rats, while Yohimbine altered several parameters reflecting a detrimental effect on the performance in the maze. These data indicate that modulation of α2A-adrenoceptor activity potently affects both dopamine-dependent hyperactivity and cognitive dysfunctions. Similar mechanisms may be involved in the beneficial effects of Guanfacine on cognitive deficits in ADHD patients. This study further supports the translational potential of DAT-KO rats for testing new pharmacological drugs.
Identifiants
pubmed: 35401264
doi: 10.3389/fpsyt.2022.851296
pmc: PMC8990031
doi:
Types de publication
Journal Article
Langues
eng
Pagination
851296Informations de copyright
Copyright © 2022 Kurzina, Belskaya, Gromova, Ignashchenkova, Gainetdinov and Volnova.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Pharmacol Ther. 2007 Mar;113(3):523-36
pubmed: 17303246
Behav Brain Res. 1998 Jul;94(1):127-52
pubmed: 9708845
Sci Rep. 2018 Sep 21;8(1):14173
pubmed: 30242292
Front Mol Neurosci. 2020 Jan 21;12:334
pubmed: 32038164
J Neurosci. 2005 Mar 2;25(9):2322-9
pubmed: 15745958
Dis Model Mech. 2016 Oct 1;9(10):1147-1158
pubmed: 27483345
J Neural Transm (Vienna). 2021 Jul;128(7):1085-1098
pubmed: 33993352
J Neurosci. 2018 Feb 21;38(8):1959-1972
pubmed: 29348190
J Neurosci. 1988 Nov;8(11):4287-98
pubmed: 2903226
Psychopharmacology (Berl). 2016 Jul;233(14):2775-85
pubmed: 27251129
Nat Rev Neurosci. 2020 Nov;21(11):644-659
pubmed: 32943779
Front Behav Neurosci. 2021 Apr 22;15:654469
pubmed: 33967714
Physiol Behav. 2002 Dec;77(4-5):537-43
pubmed: 12526996
World J Biol Psychiatry. 2017 Jun;18(4):279-290
pubmed: 26515661
Trends Pharmacol Sci. 2013 Sep;34(9):489-96
pubmed: 23968642
Behav Brain Funct. 2008 Feb 28;4:12
pubmed: 18304369
J Neurochem. 2004 Feb;88(4):1003-9
pubmed: 14756822
Indian J Physiol Pharmacol. 1990 Jul;34(3):195-200
pubmed: 2286423
Front Neural Circuits. 2021 Jun 07;15:638007
pubmed: 34163331
Behav Neural Biol. 1994 Sep;62(2):134-9
pubmed: 7993303
Science. 1999 Jan 15;283(5400):397-401
pubmed: 9888856
Rev Neurosci. 2010;21(2):119-39
pubmed: 20614802
Behav Brain Res. 1985 Oct-Nov;18(1):11-29
pubmed: 3911980
Am J Psychiatry. 2000 Aug;157(8):1236-42
pubmed: 10910785
Dis Model Mech. 2017 Apr 1;10(4):451-461
pubmed: 28167616
Genes Brain Behav. 2018 Apr;17(4):e12463
pubmed: 29406596
J Neural Transm. 1982;55(2):111-20
pubmed: 6294237
Neuron. 2018 Sep 5;99(5):1055-1068.e6
pubmed: 30122373
Child Adolesc Psychiatr Clin N Am. 2008 Apr;17(2):261-84, vii-viii
pubmed: 18295146
Indian J Physiol Pharmacol. 2014 Jul-Sep;58(3):192-6
pubmed: 25906600
Mol Psychiatry. 2011 Nov;16(11):1147-54
pubmed: 20856250
J Am Acad Child Adolesc Psychiatry. 1996 Mar;35(3):264-72
pubmed: 8714313
Behav Brain Res. 2017 Jun 15;328:19-27
pubmed: 28344096
Front Behav Neurosci. 2017 Oct 13;11:196
pubmed: 29081740
Neuropharmacology. 2009 Dec;57(7-8):590-600
pubmed: 19715710
Biol Psychiatry. 2010 Apr 1;67(7):649-56
pubmed: 20163788
Front Neuroanat. 2020 Nov 26;14:574130
pubmed: 33328901
Neurosci Lett. 2001 Jul 6;307(1):41-4
pubmed: 11516570
Behav Brain Res. 2019 Feb 1;359:516-527
pubmed: 30472113
Behav Brain Res. 2020 Jul 15;390:112642
pubmed: 32428629
Biol Psychiatry. 2011 Jun 15;69(12):e145-57
pubmed: 21550021
Front Integr Neurosci. 2018 Oct 05;12:45
pubmed: 30344481
Transl Psychiatry. 2019 Nov 15;9(1):301
pubmed: 31732713
Drug Des Devel Ther. 2021 May 11;15:1965-1969
pubmed: 34007156
Brain Res. 2016 Jun 15;1641(Pt B):217-33
pubmed: 26790349
Pharmacol Biochem Behav. 2004 Dec;79(4):641-9
pubmed: 15582672
Mol Psychiatry. 2016 Jul;21(7):872-84
pubmed: 27217152
Front Neural Circuits. 2014 Aug 05;8:93
pubmed: 25140130
Sci Rep. 2020 May 8;10(1):7771
pubmed: 32385310
Neuropsychopharmacology. 2006 Jul;31(7):1362-70
pubmed: 16319913
Neuroimage Clin. 2019;22:101728
pubmed: 30822718
Neuropharmacology. 2009 Dec;57(7-8):579-89
pubmed: 19627998
Eur J Neurosci. 2020 Nov;52(10):4356-4369
pubmed: 32367647
Biol Psychiatry. 2005 Jan 15;57(2):192-5
pubmed: 15652880
Cell. 2007 Apr 20;129(2):397-410
pubmed: 17448997
Curr Protoc Neurosci. 2011 Jan;Chapter 9:Unit9.35
pubmed: 21207367
Front Psychiatry. 2018 Feb 22;9:43
pubmed: 29520239
J Neurophysiol. 2014 Jun 15;111(12):2570-88
pubmed: 24671530
J Pharm Pract. 2014 Aug;27(4):336-49
pubmed: 25092688
Behav Brain Funct. 2006 Dec 15;2:41
pubmed: 17173664
Contemp Top Lab Anim Sci. 2004 Jul;43(4):35-6
pubmed: 15264769
J Am Acad Child Adolesc Psychiatry. 1987 Sep;26(5):676-86
pubmed: 2889717
Behav Brain Res. 2002 Mar 10;130(1-2):191-6
pubmed: 11864734
J Atten Disord. 2017 Feb;21(4):267-283
pubmed: 24232170
Neuropsychology. 2013 Sep;27(5):546-55
pubmed: 23937479
Mol Psychiatry. 2021 Oct 26;:
pubmed: 34703026
Neuropsychopharmacology. 2022 Jan;47(1):309-328
pubmed: 34312496
Front Hum Neurosci. 2020 Sep 07;14:580813
pubmed: 33132887
Biol Psychiatry. 2005 Jun 1;57(11):1239-47
pubmed: 15949994
Biol Psychiatry. 2005 Jun 1;57(11):1377-84
pubmed: 15950011
Clin Drug Investig. 2016 Jan;36(1):1-25
pubmed: 26585576
Nat Rev Neurosci. 2016 Aug;17(8):524-32
pubmed: 27256556
Biol Psychiatry. 1999 Nov 1;46(9):1234-42
pubmed: 10560028
Neurosci Lett. 2015 Oct 8;606:215-9
pubmed: 26366943
Neuroimage Clin. 2015 Dec 10;10:274-82
pubmed: 26900567
Int J Mol Sci. 2021 Apr 16;22(8):
pubmed: 33923533
Neurobiol Learn Mem. 2020 Dec;176:107327
pubmed: 33075480
Acta Psychiatr Scand. 2004 Jul;110(1):45-54
pubmed: 15180779
Cogn Affect Behav Neurosci. 2001 Mar;1(1):83-9
pubmed: 12467105
Behav Neurosci. 2009 Apr;123(2):242-51
pubmed: 19331447