Performance prediction in a visuo-motor task: the contribution of EEG analysis.
Alpha-delta
Brain rhythms
EEG
LORETA
Performance prediction
Journal
Cognitive neurodynamics
ISSN: 1871-4080
Titre abrégé: Cogn Neurodyn
Pays: Netherlands
ID NLM: 101306907
Informations de publication
Date de publication:
Apr 2022
Apr 2022
Historique:
received:
01
02
2021
revised:
02
08
2021
accepted:
02
09
2021
entrez:
11
4
2022
pubmed:
12
4
2022
medline:
12
4
2022
Statut:
ppublish
Résumé
Brain state in the time preceding the task affects motor performance at single trial level. Aim of the study was to investigate, through a single trial analysis of the Power Spectral Density (PSD) of the cortical sources of EEG rhythms, whether there are EEG markers, which can predict trial-by-trial the subject's performance as measured by the reaction time (RT). 20 healthy adult volunteers performed a specific visuomotor task while continuously recorded with a 64 electrodes EEG. For each single trial, the PSD of the cortical sources of EEG rhythms was obtained from EEG data to cortical current density time series in 12 regions of interest at Brodmann areas level. Results showed a statistically significant increase of posterior and limbic alpha 1 and of frontal beta 2 power, and a reduction of frontal and limbic delta and of temporal alpha 1 power, during triggering stimulus presentation for better performance, namely faster responses. At single trial level, correlation analyses between RTs and significant PSD, revealed positive correlations in frontal delta, temporal alpha 1, and limbic delta bands, and negative ones in frontal beta 2, parietal alpha 1, and occipital alpha 1 bands. Furthermore, the subject's faster responses have been found as correlated with the similarity between the PSD values in parietal and occipital alpha 1. Predicting individual's performance at single trial level, might be extremely useful in the clinical context, since it could allow to launch rehabilitative therapies in the most efficient brain state, avoiding useless interventions.
Identifiants
pubmed: 35401869
doi: 10.1007/s11571-021-09713-x
pii: 9713
pmc: PMC8934791
doi:
Types de publication
Journal Article
Langues
eng
Pagination
297-308Informations de copyright
© The Author(s), under exclusive licence to Springer Nature B.V. 2021.
Déclaration de conflit d'intérêts
Conflict of interestNone of the authors have potential conflicts of interest to be disclosed. Individual informed consent was obtained by subjects and the study was approved by the local Ethical Committee. Experimental procedures involved humans and were conformed to the Declaration of Helsinki and national guidelines.
Références
Exp Brain Res. 2004 Nov;159(1):14-22
pubmed: 15480586
J Neurosci. 2011 Mar 9;31(10):3813-20
pubmed: 21389236
Curr Biol. 2012 Oct 23;22(20):1969-74
pubmed: 23041197
Neuroscientist. 2019 Feb;25(1):86-93
pubmed: 29781389
Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):9457-9462
pubmed: 28808023
J Cogn Neurosci. 2014 Sep;26(9):1883-90
pubmed: 24666162
Neuron. 2014 Jul 2;83(1):238-51
pubmed: 24991964
Front Hum Neurosci. 2014 May 28;8:350
pubmed: 24904385
Nat Rev Neurosci. 2012 Jan 11;13(2):121-34
pubmed: 22233726
Nat Rev Neurosci. 2017 Oct 18;18(11):694-705
pubmed: 29042690
Neuroimage. 2018 Oct 15;180(Pt B):526-533
pubmed: 28780401
Int J Neural Syst. 2020 Feb;30(2):2050004
pubmed: 31957512
Brain Res. 2008 Mar 4;1197:115-22
pubmed: 18241846
Clin EEG Neurosci. 2021 Mar;52(2):98-104
pubmed: 32378434
Nat Rev Neurosci. 2002 Mar;3(3):201-15
pubmed: 11994752
J Neurosci. 2009 Mar 4;29(9):2725-32
pubmed: 19261866
J Neural Eng. 2021 Mar 17;18(3):
pubmed: 33601343
Hum Brain Mapp. 2014 May;35(5):1969-80
pubmed: 23868714
PLoS One. 2008 Aug 20;3(8):e3004
pubmed: 18714341
Psychophysiology. 2000 Mar;37(2):163-78
pubmed: 10731767
Neuroimage. 2004 May;22(1):57-67
pubmed: 15109997
J Cogn Neurosci. 2008 Oct;20(10):1915-25
pubmed: 18370597
Exp Brain Res. 2015 Dec;233(12):3583-95
pubmed: 26341931
J Neurosci. 2012 Jul 18;32(29):9960-8
pubmed: 22815510
J Vis. 2015;15(10):7
pubmed: 26370167
Int J Psychophysiol. 2018 Mar;125:17-28
pubmed: 29409782
J Alzheimers Dis. 2020;75(4):1253-1261
pubmed: 32417784
Int J Psychophysiol. 1996 Nov;24(1-2):161-71
pubmed: 8978441
PLoS One. 2013;8(3):e60060
pubmed: 23555884
Nutr Neurosci. 2008 Jun;11(3):103-10
pubmed: 18616866
J Alzheimers Dis. 2018;66(2):471-481
pubmed: 30282357
J Neurosci. 2009 Jun 17;29(24):7869-76
pubmed: 19535598
Brain Res. 2011 Apr 28;1387:99-107
pubmed: 21362413
Prog Neurobiol. 2012 Oct;99(1):42-60
pubmed: 22789698
Clin Neurophysiol. 2000 Nov;111(11):1961-7
pubmed: 11068230
Psychophysiology. 2012 Dec;49(12):1558-70
pubmed: 23095124
Neuroimage. 2019 Apr 1;189:878-885
pubmed: 30703522
Front Neurosci. 2019 Sep 19;13:1001
pubmed: 31607847
Schizophr Res. 1989 Nov-Dec;2(6):439-48
pubmed: 2487185
Neuron. 2006 Oct 5;52(1):155-68
pubmed: 17015233
Neuron. 2010 Feb 25;65(4):461-71
pubmed: 20188651
Clin Neurophysiol. 1999 Nov;110(11):1842-57
pubmed: 10576479
Brain Res Rev. 2007 Jan;53(1):63-88
pubmed: 16887192
Cortex. 1985 Dec;21(4):533-49
pubmed: 4092483
Electroencephalogr Clin Neurophysiol. 1971 Feb;30(2):139-46
pubmed: 4100249
J Alzheimers Dis. 2014;41(4):1239-49
pubmed: 24820018
Int J Psychophysiol. 2019 Dec;146:133-138
pubmed: 31648028
Acta Neurol Scand. 1988 Jan;77(1):36-43
pubmed: 3354310
Front Psychol. 2011 Jul 05;2:154
pubmed: 21779269
Cereb Cortex. 2018 Nov 1;28(11):4090-4104
pubmed: 30215669
Clin Neurophysiol. 2007 Aug;118(8):1711-20
pubmed: 17581775
Methods Find Exp Clin Pharmacol. 2002;24 Suppl D:5-12
pubmed: 12575463
Biol Psychiatry. 1998 Oct 15;44(8):775-7
pubmed: 9798082
Neurosci Biobehav Rev. 2007;31(3):377-95
pubmed: 17145079
J Clin Neurophysiol. 1999 Nov;16(6):512-9
pubmed: 10600019
Neuroscience. 2006 Dec;143(3):793-803
pubmed: 17049178
Trends Cogn Sci. 2010 Nov;14(11):506-15
pubmed: 20932795
Hum Brain Mapp. 2009 Jul;30(7):2173-83
pubmed: 18830957
J Neurosci. 2010 Jun 23;30(25):8692-7
pubmed: 20573914
Front Integr Neurosci. 2013 Dec 05;7:83
pubmed: 24367301