Localization of Multi-Lamellar Vesicle Nanoparticles to Injured Brain Tissue in a Controlled Cortical Impact Injury Model of Traumatic Brain Injury in Rodents.
blood–brain barrier
controlled cortical impact
in vivo studies
traumatic brain injury
Journal
Neurotrauma reports
ISSN: 2689-288X
Titre abrégé: Neurotrauma Rep
Pays: United States
ID NLM: 101773091
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
11
4
2022
pubmed:
12
4
2022
medline:
12
4
2022
Statut:
epublish
Résumé
Severe traumatic brain injury (TBI), such as that suffered by patients with cerebral contusion, is a major cause of death and disability in young persons. Effective therapeutics to treat or mitigate the effects of severe TBI are lacking, in part because drug delivery to the injured brain remains a challenge. Promising therapeutics targeting secondary injury mechanisms may have poor pharmacokinetics/pharmacodynamics, unwanted side effects, or high hydrophobicity. To address these challenges, we have developed a multi-lamellar vesicle nanoparticle (MLV-NP) formulation with a narrow size distribution (243 nm in diameter, 0.09 polydispersity index) and the capability of encapsulating hydrophobic small molecule drugs for delivery to the injured brain. To demonstrate the utility of these particles, we produced dual-fluorescent labeled nanoparticles containing the organic dyes, coumarin 153 and rhodamine B, that were delivered intravenously to Sprague-Dawley rats and C57Bl6/J mice at 1, 1 and 4, 24, or 48 h after controlled cortical impact injury. Distribution of particles was measured at 5, 25, 48, or 49 h post-injury by fluorescence microscopy of coronal brain sections. In all cases of MLV administration, a 1.2- to 1.9-fold enhancement of ipsilateral fluorescence signal was observed compared to the contralateral cortex. Enhanced fluorescence was also observed in the injured hippocampal tissue in these animals. MLV-NPs administered at 1 h were observed intracellularly in the injured hemisphere at 48 h, suggesting the possibility of concentrated drug delivery to injured cells. These results suggest that MLV-NP delivery of therapeutic agents may be a viable strategy for treating cerebral contusion TBI.
Identifiants
pubmed: 35403102
doi: 10.1089/neur.2021.0049
pii: 10.1089/neur.2021.0049
pmc: PMC8985535
doi:
Types de publication
Journal Article
Langues
eng
Pagination
158-167Informations de copyright
© Ricky Whitener et al., 2022; Published by Mary Ann Liebert, Inc.
Déclaration de conflit d'intérêts
No competing financial interests exist.
Références
J Neurotrauma. 1994 Jun;11(3):289-301
pubmed: 7996583
J Control Release. 2012 Dec 10;164(2):145-55
pubmed: 22609350
Curr Opin Neurobiol. 2006 Jun;16(3):258-64
pubmed: 16713245
Clin Pharmacokinet. 2001;40(7):539-51
pubmed: 11510630
Curr Top Med Chem. 2014;14(9):1148-60
pubmed: 24678707
Adv Pharm Bull. 2017 Apr;7(1):3-9
pubmed: 28507932
Acta Biomater. 2015 Feb;13:207-15
pubmed: 25463492
Chem Soc Rev. 2011 Jan;40(1):173-90
pubmed: 20877875
Int J Nanomedicine. 2016 Oct 18;11:5381-5414
pubmed: 27799765
J Head Trauma Rehabil. 1999 Dec;14(6):602-15
pubmed: 10671706
Sci Rep. 2016 Jul 22;6:29988
pubmed: 27444615
PLoS One. 2013 Apr 24;8(4):e61819
pubmed: 23637912
Biochim Biophys Acta. 2009 Nov;1787(11):1416-24
pubmed: 19298790
Transl Stroke Res. 2011 Dec;2(4):492-516
pubmed: 22299022
Nanoscale Res Lett. 2018 Oct 25;13(1):339
pubmed: 30361809
Pharm Res. 2016 Oct;33(10):2373-87
pubmed: 27299311
Int J Mol Sci. 2013 Dec 30;15(1):309-41
pubmed: 24381049
J Neurosci Res. 2008 Apr;86(5):1053-63
pubmed: 18183616
Antioxid Redox Signal. 2009 Oct;11(10):2481-504
pubmed: 19309263
Front Neurol. 2016 Aug 17;7:134
pubmed: 27582726
Integr Biol (Camb). 2014 Jan;6(1):9-26
pubmed: 24104563
Nanomedicine (Lond). 2016 Mar;11(6):673-92
pubmed: 27003448
Neurobiol Dis. 2010 Jan;37(1):48-57
pubmed: 19664710
J Control Release. 2001 Nov 9;77(1-2):27-38
pubmed: 11689257
J Cereb Blood Flow Metab. 2011 Mar;31(3):e1-6
pubmed: 21157470
J Cereb Blood Flow Metab. 2007 Nov;27(11):1806-18
pubmed: 17406655
Cell Calcium. 2004 Sep-Oct;36(3-4):295-302
pubmed: 15261485
Biomed Microdevices. 2016 Feb;18(1):8
pubmed: 26780443
Immune Netw. 2018 Aug 13;18(4):e27
pubmed: 30181915
Nat Rev Neurol. 2010 Jul;6(7):393-403
pubmed: 20551947
J Neurotrauma. 2021 Mar;38(5):628-645
pubmed: 33203303
Biochim Biophys Acta. 2009 May;1787(5):335-44
pubmed: 19268425
Pharmaceutics. 2019 Sep 13;11(9):
pubmed: 31540234
J Neurotrauma. 2015 Dec 1;32(23):1893-901
pubmed: 25057965
Biochem Biophys Res Commun. 1975 Apr 7;63(3):651-8
pubmed: 1131256
J Neurotrauma. 1999 Jul;16(7):583-94
pubmed: 10447070
ISRN Biochem. 2013 May 21;2013:238428
pubmed: 25937958
BMC Neurol. 2009 Jun 12;9 Suppl 1:S3
pubmed: 19534732
Bioeng Transl Med. 2019 Sep 05;4(3):e10143
pubmed: 31572799
Nat Mater. 2011 Mar;10(3):243-51
pubmed: 21336265
Chem Soc Rev. 2017 Jul 17;46(14):4218-4244
pubmed: 28585944
Adv Healthc Mater. 2018 Jan;7(1):
pubmed: 29034608
J Neurotrauma. 2004 Sep;21(9):1196-203
pubmed: 15453989
Biomaterials. 2013 Apr;34(12):3098-109
pubmed: 23375392
J Biomed Mater Res A. 2017 May;105(5):1479-1486
pubmed: 27998010