Bayesian sample size determination for diagnostic accuracy studies.
Bayesian assurance
binomial intervals
contingency tables
power calculations
sensitivity
specificity
Journal
Statistics in medicine
ISSN: 1097-0258
Titre abrégé: Stat Med
Pays: England
ID NLM: 8215016
Informations de publication
Date de publication:
10 07 2022
10 07 2022
Historique:
revised:
21
02
2022
received:
12
11
2021
accepted:
11
03
2022
pubmed:
12
4
2022
medline:
22
6
2022
entrez:
11
4
2022
Statut:
ppublish
Résumé
The development of a new diagnostic test ideally follows a sequence of stages which, among other aims, evaluate technical performance. This includes an analytical validity study, a diagnostic accuracy study, and an interventional clinical utility study. In this article, we propose a novel Bayesian approach to sample size determination for the diagnostic accuracy study, which takes advantage of information available from the analytical validity stage. We utilize assurance to calculate the required sample size based on the target width of a posterior probability interval and can choose to use or disregard the data from the analytical validity study when subsequently inferring measures of test accuracy. Sensitivity analyses are performed to assess the robustness of the proposed sample size to the choice of prior, and prior-data conflict is evaluated by comparing the data to the prior predictive distributions. We illustrate the proposed approach using a motivating real-life application involving a diagnostic test for ventilator associated pneumonia. Finally, we compare the properties of the approach against commonly used alternatives. The results show that, when suitable prior information is available, the assurance-based approach can reduce the required sample size when compared to alternative approaches.
Identifiants
pubmed: 35403239
doi: 10.1002/sim.9393
pmc: PMC9325402
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2908-2922Subventions
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Department of Health
Pays : United Kingdom
Informations de copyright
© 2022 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
Références
Am J Trop Med Hyg. 2020 May;102(5):915-916
pubmed: 32238224
J Clin Epidemiol. 2021 Jan;129:51-59
pubmed: 32991994
Thorax. 2015 Jan;70(1):41-7
pubmed: 25298325
Biometrics. 2003 Sep;59(3):580-90
pubmed: 14601759
J Appl Stat. 2013 Feb 1;40(2):311-319
pubmed: 26989292
BMJ. 2006 May 13;332(7550):1127-9
pubmed: 16627488
J Clin Epidemiol. 2012 Mar;65(3):293-300
pubmed: 21995974
Stat Methods Med Res. 2019 Apr;28(4):1272-1289
pubmed: 29284369
Am Stat. 2021;75(4):424-432
pubmed: 34992303
Thorax. 2010 Mar;65(3):201-7
pubmed: 19825784
Stat Med. 2022 Jul 10;41(15):2908-2922
pubmed: 35403239
Med Decis Making. 2001 May-Jun;21(3):219-30
pubmed: 11386629
Stat Med. 2020 Feb 28;39(5):591-601
pubmed: 31773788
Diagn Progn Res. 2019 Dec 19;3:22
pubmed: 31890896
Philos Trans A Math Phys Eng Sci. 2008 Jul 13;366(1874):2405-18
pubmed: 18407898
Micromachines (Basel). 2020 Mar 10;11(3):
pubmed: 32164393
Br Med J. 1980 Nov 15;281(6251):1336-8
pubmed: 7437789
Stat Med. 2015 Dec 10;34(28):3724-49
pubmed: 26346180
Lancet. 2014 Jan 11;383(9912):166-75
pubmed: 24411645
Diagn Progn Res. 2021 May 20;5(1):11
pubmed: 34016192
Trials. 2015 May 12;16:213
pubmed: 25962998
Biometrics. 2014 Dec;70(4):1023-32
pubmed: 25355546