Cytochrome P450 2E1-dependent hepatic ethanol metabolism induces fatty acid-binding protein 4 and steatosis.


Journal

Alcoholism, clinical and experimental research
ISSN: 1530-0277
Titre abrégé: Alcohol Clin Exp Res
Pays: England
ID NLM: 7707242

Informations de publication

Date de publication:
06 2022
Historique:
revised: 31 03 2022
received: 11 11 2021
accepted: 04 04 2022
pubmed: 12 4 2022
medline: 29 6 2022
entrez: 11 4 2022
Statut: ppublish

Résumé

Hepatic steatosis is an early pathology of alcohol-associated liver disease (ALD). Fatty acid-binding protein-4 (FABP4, a FABP not normally produced in the liver) is secreted by hepatocytes in ALD and stimulates hepatoma proliferation and migration. This study sought to investigate the mechanism[s] by which hepatic ethanol metabolism regulates FABP4 and steatosis. Human hepatoma cells (HepG2/HuH7) and cells stably transfected to express cytochrome P450 2E1 (CYP2E1), were exposed to ethanol in the absence or presence of chlormethiazole (a CYP2E1-inhibitor; CMZ) and/or EX-527 (a sirtuin-1 [SIRT1] inhibitor). The culture medium was analyzed for ethanol metabolism and FABP4 protein abundance. Cells were analyzed for FABP4 mRNA expression, SIRT1 protein abundance, and neutral lipid accumulation. In parallel, cells were analyzed for forkhead box O1 [FOXO1], β-catenin, peroxisome proliferator-activated receptor-α [PPARα], and lipin-1α protein abundance in the absence or presence of ethanol and pharmacological inhibitors of the respective target proteins. CYP2E1-dependent ethanol metabolism inhibited the amount of SIRT1 protein detected, concomitant with increased FABP4 mRNA expression, FABP4 protein secretion, and neutral lipid accumulation, effects abolished by CMZ. Analysis of pathways associated with lipid oxidation revealed increased FOXO1 nuclear localization and decreased β-catenin, PPARα, and lipin-1α protein levels in CYP2E1-expressing cells in the presence of ethanol. Pharmacological inhibition of SIRT1 mimicked the effects of ethanol, while inhibition of FOXO1 abrogated the effect of ethanol on FABP4 mRNA expression, FABP4 protein secretion, and neutral lipid accumulation in CYP2E1-expressing cells. Pharmacological inhibition of β-catenin, PPARα, or lipin-1α failed to alter the effects of ethanol on FABP4 or neutral lipid accumulation. CYP2E1-dependent ethanol metabolism inhibits SIRT1-FOXO1 signaling, which leads to increased FABP4 mRNA expression, FABP4 protein secretion, and neutral lipid accumulation. These data suggest that FABP4 released from steatotic hepatocytes could play a role in promoting tumor cell expansion in the setting of ALD and represents a potential target for therapeutic intervention.

Sections du résumé

BACKGROUND
Hepatic steatosis is an early pathology of alcohol-associated liver disease (ALD). Fatty acid-binding protein-4 (FABP4, a FABP not normally produced in the liver) is secreted by hepatocytes in ALD and stimulates hepatoma proliferation and migration. This study sought to investigate the mechanism[s] by which hepatic ethanol metabolism regulates FABP4 and steatosis.
METHODS
Human hepatoma cells (HepG2/HuH7) and cells stably transfected to express cytochrome P450 2E1 (CYP2E1), were exposed to ethanol in the absence or presence of chlormethiazole (a CYP2E1-inhibitor; CMZ) and/or EX-527 (a sirtuin-1 [SIRT1] inhibitor). The culture medium was analyzed for ethanol metabolism and FABP4 protein abundance. Cells were analyzed for FABP4 mRNA expression, SIRT1 protein abundance, and neutral lipid accumulation. In parallel, cells were analyzed for forkhead box O1 [FOXO1], β-catenin, peroxisome proliferator-activated receptor-α [PPARα], and lipin-1α protein abundance in the absence or presence of ethanol and pharmacological inhibitors of the respective target proteins.
RESULTS
CYP2E1-dependent ethanol metabolism inhibited the amount of SIRT1 protein detected, concomitant with increased FABP4 mRNA expression, FABP4 protein secretion, and neutral lipid accumulation, effects abolished by CMZ. Analysis of pathways associated with lipid oxidation revealed increased FOXO1 nuclear localization and decreased β-catenin, PPARα, and lipin-1α protein levels in CYP2E1-expressing cells in the presence of ethanol. Pharmacological inhibition of SIRT1 mimicked the effects of ethanol, while inhibition of FOXO1 abrogated the effect of ethanol on FABP4 mRNA expression, FABP4 protein secretion, and neutral lipid accumulation in CYP2E1-expressing cells. Pharmacological inhibition of β-catenin, PPARα, or lipin-1α failed to alter the effects of ethanol on FABP4 or neutral lipid accumulation.
CONCLUSION
CYP2E1-dependent ethanol metabolism inhibits SIRT1-FOXO1 signaling, which leads to increased FABP4 mRNA expression, FABP4 protein secretion, and neutral lipid accumulation. These data suggest that FABP4 released from steatotic hepatocytes could play a role in promoting tumor cell expansion in the setting of ALD and represents a potential target for therapeutic intervention.

Identifiants

pubmed: 35403271
doi: 10.1111/acer.14828
pmc: PMC9246908
mid: NIHMS1797175
doi:

Substances chimiques

Fatty Acid-Binding Proteins 0
Lipids 0
PPAR alpha 0
RNA, Messenger 0
beta Catenin 0
Ethanol 3K9958V90M
Cytochrome P-450 CYP2E1 EC 1.14.13.-
Sirtuin 1 EC 3.5.1.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

928-940

Subventions

Organisme : NIAAA NIH HHS
ID : R21 AA029241
Pays : United States

Informations de copyright

© 2022 by the Research Society on Alcoholism.

Références

Sci Transl Med. 2017 Sep 13;9(407):
pubmed: 28904225
Hepatology. 2002 May;35(5):1196-204
pubmed: 11981770
PLoS One. 2014 Jun 20;9(6):e98155
pubmed: 24950230
Gastroenterology. 2014 Mar;146(3):801-11
pubmed: 24262277
Oncotarget. 2018 Jan 30;9(13):11243-11257
pubmed: 29541410
Am J Physiol Gastrointest Liver Physiol. 2015 Oct 1;309(7):G566-77
pubmed: 26251470
Gastroenterology. 2008 Jun;134(7):2144-52
pubmed: 18549882
Cell Metab. 2009 Apr;9(4):327-38
pubmed: 19356714
Dig Dis. 2010;28(6):802-11
pubmed: 21525766
Int J Environ Res Public Health. 2010 Dec;7(12):4281-304
pubmed: 21318009
Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6658-63
pubmed: 10841563
Chem Biol Interact. 2020 Jan 25;316:108918
pubmed: 31836462
Gastroenterology. 2012 Sep;143(3):754-764
pubmed: 22684045
Alcohol Res. 2017;38(2):147-161
pubmed: 28988570
J Pharmacol Exp Ther. 1994 Jun;269(3):1286-91
pubmed: 8014872
Hepatol Res. 2001 Feb;19(2):117-130
pubmed: 11164737
Front Pharmacol. 2020 Mar 10;11:216
pubmed: 32210812
Alcohol Clin Exp Res. 1991 Feb;15(1):45-66
pubmed: 2059245
Exp Clin Endocrinol Diabetes. 2016 Mar;124(3):131-9
pubmed: 26588494
Diabetes. 2014 Mar;63(3):900-11
pubmed: 24319114
J Lipid Res. 2009 Aug;50(8):1663-75
pubmed: 19289416
J Biol Chem. 2018 Jun 29;293(26):10333-10343
pubmed: 29764933
Cancer Med. 2018 Jun;7(6):2629-2640
pubmed: 29733540
Electrophoresis. 2000 Oct;21(16):3420-6
pubmed: 11079562
J Biol Chem. 2014 Aug 15;289(33):23168-23176
pubmed: 24939870
Diabetes. 2019 Sep;68(9):1767-1777
pubmed: 31171562
J Cell Biochem. 2009 Aug 1;107(5):984-91
pubmed: 19479941
Int J Biol Sci. 2020 Oct 17;16(16):3174-3183
pubmed: 33162823
Sci Rep. 2016 Jul 27;6:30496
pubmed: 27460655
J Biol Chem. 2003 Jul 25;278(30):27997-8004
pubmed: 12791698
Hepatology. 2008 May;47(5):1483-94
pubmed: 18393316
Clin Liver Dis. 2012 Nov;16(4):667-85
pubmed: 23101976
Nat Med. 2001 Jun;7(6):699-705
pubmed: 11385507
Curr Opin Clin Nutr Metab Care. 2014 Mar;17(2):124-9
pubmed: 24500438
Proc Natl Acad Sci U S A. 1986 Jun;83(11):3786-90
pubmed: 3520554
J Hepatol. 2019 Feb;70(2):237-248
pubmed: 30658725
Alcohol Alcohol. 1990;25(2-3):127-36
pubmed: 2142884
Liver Int. 2018 Jun;38(6):1074-1083
pubmed: 29171144
Proc Soc Exp Biol Med. 2000 Sep;224(4):302-8
pubmed: 10964266
Int J Cancer. 2010 May 15;126(10):2426-36
pubmed: 19662654
J Clin Invest. 2011 Nov;121(11):4477-90
pubmed: 21965330
Oncogene. 2019 Apr;38(16):3033-3046
pubmed: 30575815
Chem Biol Interact. 2011 Jun 30;192(1-2):107-12
pubmed: 21354120
Int J Biochem Cell Biol. 2006 Jan;38(1):92-101
pubmed: 16181800
Oxid Med Cell Longev. 2018 Sep 30;2018:8515343
pubmed: 30402207
Cell Cycle. 2014;13(23):3759-67
pubmed: 25483084
Transl Oncol. 2021 Jan;14(1):100975
pubmed: 33290990
Int J Biol Sci. 2017 Jul 6;13(7):852-867
pubmed: 28808418
Am J Physiol. 1999 Dec;277(6):G1259-67
pubmed: 10600824
Biochem Biophys Res Commun. 2008 Aug 22;373(2):246-52
pubmed: 18555008
J Biol Chem. 1982 Jul 10;257(13):7872-8
pubmed: 6806286
Mol Pharmacol. 1998 Apr;53(4):638-48
pubmed: 9547353
Int J Mol Sci. 2018 Sep 01;19(9):
pubmed: 30200508

Auteurs

Neha Attal (N)

Department of Surgery, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina, USA.

Emilio Marrero (E)

Department of Surgery, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina, USA.

Kyle J Thompson (KJ)

Department of Surgery, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina, USA.

Iain H McKillop (IH)

Department of Surgery, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH