Blue light irradiation increases the relative abundance of the diatom Nitzschia palea in co-culture with cyanobacterium Microcystis aeruginosa.

algae competition light-emitting diode water blooms

Journal

Water environment research : a research publication of the Water Environment Federation
ISSN: 1554-7531
Titre abrégé: Water Environ Res
Pays: United States
ID NLM: 9886167

Informations de publication

Date de publication:
16 Mar 2022
Historique:
revised: 02 03 2022
received: 30 11 2021
accepted: 05 03 2022
entrez: 11 4 2022
pubmed: 12 4 2022
medline: 12 4 2022
Statut: aheadofprint

Résumé

Lake eutrophication is associated with cyanobacterial blooms. The pennate diatom Nitzschia palea (N. palea) inhibits the growth of the cyanobacterium Microcystis aeruginosa (M. aeruginosa); therefore, increasing the relative abundance of N. palea may contribute to the inhibition of Microcystis blooms. Several studies have demonstrated that blue light irradiation promotes diatom growth and inhibits cyanobacterial growth. In this study, we evaluated the effects of blue light irradiation on N. palea and M. aeruginosa abundance. Monocultures and co-cultures of N. palea and M. aeruginosa were exposed to blue light and fluorescent light at 32 μmol photons m

Identifiants

pubmed: 35403347
doi: 10.1002/wer.10707
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e10707

Informations de copyright

© 2022 Water Environment Federation.

Références

Amano, Y., Takahashi, K., & Machida, M. (2012). Competition between the cyanobacterium Microcystis aeruginosa and the diatom Cyclotella sp. under nitrogen-limited condition caused by dilution in eutrophic lake. Journal of Applied Phycology, 24, 965-971. https://doi.org/10.1007/s10811-011-9718-8
Bhagowati, B., & Ahamad, K. U. (2019). A review on lake eutrophication dynamics and recent developments in lake modeling. Ecohydrology and Hydrobiology, 19, 155-166. https://doi.org/10.1016/j.ecohyd.2018.03.002
Bland, E., & Angenent, L. T. (2016). Pigment-targeted light wavelength and intensity promotes efficient photoautotrophic growth of cyanobacteria. Bioresource Technology, 216, 579-586. https://doi.org/10.1016/j.biortech.2016.05.116
Bockwoldt, K. A., Nodine, E. R., Mihuc, T. B., Shambaugh, A. D., & Stockwell, J. D. (2017). Reduced phytoplankton and zooplankton diversity associated with increased cyanobacteria in Lake Champlain, USA. Journal of Contemporary Water Research & Education, 160(1), 100-118. https://doi.org/10.1111/j.1936-704X.2017.03243.x
Brett, M. T., & Muller-Navarra, D. C. (1997). The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biology, 38(3), 483-499. https://doi.org/10.1046/j.1365-2427.1997.00220.x
Chellappa, N. T., Camara, F. R. A., & Rocha, O. (2009). Phytoplankton community: Indicator of water quality in the Armando Ribeiro Goncalves reservoir and Pataxo channel Rio Grande do Norte, Brazil. Brazilian Journal of Biology, 69(2), 241-251. https://doi.org/10.1590/S1519-69842009000200003
Chen, H. B., Wu, J. Y., Wang, C. F., Fu, C. C., Shieh, C. J., Chen, C. I., Wang, C. Y., & Liu, Y. C. (2010). Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochemical Engineering Journal, 53(1), 52-56. https://doi.org/10.1016/j.bej.2010.09.004
Coles, J. F., & Jones, R. C. (2000). Effect of temperature on photosynthesis-light response and growth of four phytoplankton species isolated from a tidal freshwater river. Journal of Phycology, 36, 7-16. https://doi.org/10.1046/j.1529-8817.2000.98219.x
Ducobu, H., Huisman, J., Jonker, R. R., & Mur, L. R. (1998). Competition between a prochlorophyte and a cyanobacterium under various phosphorus regimes: Comparison with the droop model. Journal of Phycology, 34, 467-476. https://doi.org/10.1046/j.1529-8817.1998.340467.x
Falchi, F., Cinzano, P., Duriscoe, D., Kyba, C. C. M., Elvidge, C. D., Baugh, K., Portnov, B. A., Rybnikova, N. A., & Furgoni, R. (2016). The new world atlas of artificial night sky brightness. Science Advances, 2(6), e1600377. https://doi.org/10.1126/sciadv.1600377
Fujibayashi, M., Furuta, S., Inoue, E., Ichise, S., & Takei, N. (2021). Dominance of harmful algae, Microcystis spp. and Micrasterias hardi, has negative consequences for bivalves in a freshwater lake. Harmful Algae, 101, 101967. https://doi.org/10.1016/j.hal.2020.101967
Grubisic, M., Singer, G., Bruno, M. C., Grunsven, R. H. A., Manfrin, A., Monaghan, M. T., & Holker, F. (2017). Artificial light at night decreases biomass and alters community composition of benthic primary producers in a sub-alpine stream. Limnology and Oceanography, 62, 2799-2810. https://doi.org/10.1002/lno.10607
Guillard, R. R. L., & Lorenzen, C. J. (1972). Yellow-green algae with chlorophyllide. Journal of Phycology, 8, 10-14. https://doi.org/10.1111/j.1529-8817.1972.tb03995.x
Gulati, R. D., & Demott, W. R. (1997). The role of food quality for zooplankton: Remarks on the state-of-the-art, perspectives and priorities. Freshwater Biology, 38(3), 753-768. https://doi.org/10.1046/j.1365-2427.1997.00275.x
Haghighi, E., Madani, K., & Hoekstra, A. Y. (2018). The water footprint of water conservation using shade balls in California. Nature Sustainability, 1, 358-360. https://doi.org/10.1038/s41893-018-0092-2
Hao, A., Haraguchi, T., Kuba, T., Kai, H., Lin, Y., & Iseri, Y. (2021). Effect of the microorganism-adherent carrier for Nitzschia palea to control the cyanobacterial blooms. Ecological Engineering, 159(15), 106127. https://doi.org/10.1016/j.ecoleng.2020.106127
Haroon, A. M., Tahoun, U. M., Sabae, S. A., & Hamza, W. T. (2020). Biological characterization of water in Damietta branch of the Nile River, Egypt. Pakistan Journal of Biological Sciences, 23, 861-882. https://doi.org/10.3923/pjbs.2020.861.882
Holdsworth, E. S. (1985). Effect of growth factors and light quality on the growth, pigmentation and photosynthesis of two diatoms, Thalassiosira gravida and Phaeodactylum tricornutum. Marine Biology, 86, 253-262. https://doi.org/10.1007/BF00397512
Holker, F., Moss, T., Griefahn, B., Kloas, W., Voigt, C. C., Henckel, D., Hanel, A., Kappeler, P. M., Volker, S., Schwope, A., Franke, S., Uhrlandt, D., Fischer, J., Klenke, R., Wolter, C., & Tockner, K. (2010). The dark side of light: A transdisciplinary research agenda for light pollution policy. Ecology and Society, 15(4), 13. https://doi.org/10.5751/ES-03685-150413
Imai, H., Chang, K. H., Kusaba, M., & Nakano, S. (2009). Temperature-dependent dominance of Microcystis (Cyanophyceae) species: M. aeruginosa and M. wesenbergii. Journal of Plankton Research, 31(2), 171-178. https://doi.org/10.1093/plankt/fbn110
Khan, M. I., Lee, M. G., Seo, H. J., Shin, J. H., Shin, T. S., Yoon, Y. H., Kim, M. Y., Choi, J. I., & Kim, J. D. (2016). Enhancing the feasibility of Microcystis aeruginosa as a feedstock for bioethanol production under the influence of various factors. BioMed Research International, 2016, 4540826. https://doi.org/10.1155/2016/4540826
Khatoon, H., Leong, L. K., Rahman, N. A., Mian, S., Begum, H., Banerjee, S., & Endut, A. (2018). Effects of different light source and media on growth and production of phycobiliprotein from freshwater cyanobacteria. Bioresource Technology, 249, 652-658. https://doi.org/10.1016/j.biortech.2017.10.052
Kim Tiam, S., Lavoie, I., Doose, C., Hamilton, P. B., & Fortin, C. (2018). Morphological, physiological and molecular responses of Nitzschia palea under cadmium stress. Ecotoxicology, 27, 675-688. https://doi.org/10.1007/s10646-018-1945-1
Li, M., Nkrumah, P. N., & Xiao, M. (2014). Biochemical composition of Microcystis aeruginosa related to specific growth rate: Insight into the effects of abiotic factors. Inland Waters, 4, 357-362. https://doi.org/10.5268/IW-4.4.710
Li, X., Marella, T. K., Tao, L., Li, R., Tiwari, A., & Gi, L. (2017). Optimization of growth conditions and fatty acid analysis for three freshwater diatom isolates. Phycological Research, 65, 177-187. https://doi.org/10.1111/pre.12174
Li, Y., Li, R., & Yi, X. (2020). Effects of light quality on growth rates and pigments of Chaetoceros gracilis (Bacillariophyceae). Journal of Oceanology and Limnology, 38, 795-801. https://doi.org/10.1007/s00343-019-9171-0
Luimstra, V. M., Schuurmans, J. M., de Carvalho, C. F. M., Matthijs, H. C. P., Hellingwerf, K. J., & Huisman, J. (2019). Exploring the low photosynthetic efficiency of cyanobacteria in blue light using a mutant lacking phycobilisomes. Photosynthesis Research, 141, 291-301. https://doi.org/10.1007/s11120-019-00630-z
Luimstra, V. M., Schuurmans, J. M., Verschoor, A. M., Hellingwerf, K. J., Huisman, J., & Matthijs, H. C. P. (2018). Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II. Photosynthesis Research, 138, 177-189. https://doi.org/10.1007/s11120-018-0561-5
Ma, J., Wang, P., Wang, X., Xu, Y., & Paerl, H. W. (2019). Cyanobacteria in eutrophic waters benefit from rising atmospheric CO2 concentrations. Science of the Total Environment, 691, 1144-1154. https://doi.org/10.1016/j.scitotenv.2019.07.056
Meng, F., Cui, H., Wang, Y., & Li, X. (2018). Responses of a new isolated Cyanobacterium aponinum strain to temperature, pH, CO2 and light quality. Journal of Applied Phycology, 30, 1525-1532. https://doi.org/10.1007/s10811-018-1411-8
Mikawa, M., Sugimoto, K., Amano, Y., Machida, M., & Imazeki, F. (2016). Competitive growth characteristics between Microcystis aeruginosa and Cyclotella sp. accompanying changes in river water inflow and their simulation model. Phycological Research, 64, 123-132. https://doi.org/10.1111/pre.12129
Mitrovic, S. M., Chessman, B. C., Davie, A., Avery, E. L., & Ryan, N. (2008). Development of blooms of Cyclotella meneghiniana and Nitzschia spp. (Bacillariophyceae) in a shallow river and estimation of effective suppression flows. Hydrobiologia, 596, 173-185. https://doi.org/10.1007/s10750-007-9094-1
Mouget, J. L., Rosa, P., & Tremblin, G. (2004). Acclimation of Haslea ostrearia to light of different spectral qualities-Confirmation of ‘chromatic adaptation’ in diatoms. Journal of Photochemistry and Photobiology B: Biology, 75, 1-11. https://doi.org/10.1016/j.jphotobiol.2004.04.002
Niu, Y., Shen, H., Chen, J., Xie, P., Yang, X., Tao, M., Ma, Z., & Qi, M. (2011). Phytoplankton community succession shaping bacterioplankton community composition in Lake Taihu, China. Water Research, 45(14), 4169-4182. https://doi.org/10.1016/j.watres.2011.05.022
Ohkubo, N., Yagi, O., & Okada, M. (1991). Effects of temperature and illumination on the growth of blue-green alga Microcystis viridis. Japanese Journal of Limnology, 52(4), 255-261. https://doi.org/10.3739/rikusui.52.255
O'Neil, J. M., Davis, T. W., Burford, M. A., & Gobler, C. J. (2012). The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae, 14, 313-334. https://doi.org/10.1016/j.hal.2011.10.027
Paerl, H. W. (2014). Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted world. Life, 4(4), 988-1012. https://doi.org/10.3390/life4040988
Papagiannakis, E., van Stokkum, I. H. M., Fey, H., Buchel, C., & van Grondelle, R. (2005). Spectroscopic characterization of the excitation energy transfer in the fucoxanthin-chlorophyll protein of diatoms. Photosynthesis Research, 86, 241-250. https://doi.org/10.1007/s11120-005-1003-8
Romo, S., & Miracle, M. R. (1994). Population dynamics and ecology of subdominant phytoplankton species in a shallow hypertrophic lake (Albufera of Valencia, Spain). Hydrobiologia, 273, 37-56. https://doi.org/10.1007/BF00126767
Shikata, T., Nukata, A., Yoshikawa, S., Matsubara, T., Yamasaki, Y., Shimasaki, Y., Oshima, Y., & Honjo, T. (2009). Effects of light quality on initiation and development of meroplanktonic diatom blooms in a eutrophic shallow sea. Marine Biology, 156, 875-889. https://doi.org/10.1007/s00227-009-1131-3
Tan, X., Zhang, D., Duan, Z., Parajuli, K., & Hu, J. (2020). Effects of light color on interspecific competition between Microcystis aeruginosa and Chlorella pyrenoidosa in batch experiment. Environmental Science and Pollution Research, 27(1), 344-352. https://doi.org/10.1007/s11356-019-06650-5
Toporowska, M., & Pawlik-Skowrońska, B. (2014). Four -year study on phytoplankton biodiversity in a small hypertrophic lake affected by water blooms of toxigenic cyanobacteria. Polish Journal of Environmental Studies, 23(2), 491-499.
Wang, C. Y., Fu, C. C., & Liu, Y. C. (2007). Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochemical Engineering Journal, 37(1), 21-25. https://doi.org/10.1016/j.bej.2007.03.004
Wang, L. J., Fan, Y., Parsons, R. L., Hu, G. R., Zhang, P. Y., & Li, F. L. (2018). A rapid method for the determination of fucoxanthin in diatom. Marine Drugs, 16(33), 1-13. https://doi.org/10.3390/md16010033
Watanabe, S., Okuma, I., Podiapen, T. N., Iseri, Y., Hao, A., & Kuba, T. (2020). Physiological characteristics of diatom Nitzschia palea for ecological engineering countermeasure method of water blooms. Journal of Japan Society of Civil Engineers, Ser. G (Environmental Research), 76(7), III_367-III_373. (in Japanese with English summary). https://doi.org/10.2208/jscejer.76.7_III_367
Watanabe, S., Podiapen, T. N., Itose, R., Iseri, Y., Hao, A., & Kuba, T. (2019). The competition characteristic of diatom Nitzschia palea and water blooms and the growth inhibition effect of LED irradiation on cyanobacteria Microcystis aeruginosa. Journal of Japan Society of Civil Engineers, Ser. G (Environmental Research), 75(7), III_97-III_105. (in Japanese with English summary). https://doi.org/10.2208/jscejer.75.7_III_97
Wyman, M., & Fay, P. (1986). Underwater light climate and the growth and pigmentation of planktonic blue-green-algae (Cyanobacteria) II. The influence of light quality. Proceedings of the Royal society of London. Series B. Biological Sciences, 227(1248), 381-393. https://doi.org/10.1098/rspb.1986.0028
You, J., Mallery, K., Hong, J., & Hondzo, M. (2018). Temperature effects on growth and buoyancy of Microcystis aeruginosa. Journal of Plankton Research, 40(1), 16-28. https://doi.org/10.1093/plankt/fbx059
Zevenboom, W., & Mur, L. R. (1984). Growth and photosynthetic response of the cyanobacterium Microcystis aeruginosa in relation to photoperiodicity and irradiance. Archives of Microbiology, 139, 232-239. https://doi.org/10.1007/BF00402006

Auteurs

Shunsuke Watanabe (S)

Department of Urban and Environmental Engineering, Kyushu University, Fukuoka, Japan.

Naoki Matsunami (N)

Department of Urban and Environmental Engineering, Kyushu University, Fukuoka, Japan.

Ikki Okuma (I)

Department of Urban and Environmental Engineering, Kyushu University, Fukuoka, Japan.

Podiapen Tannen Naythen (PT)

Central Water Authority Head Office, Phoenix, Mauritius.

Megumu Fujibayashi (M)

Department of Urban and Environmental Engineering, Kyushu University, Fukuoka, Japan.

Yasushi Iseri (Y)

College of Life and Environmental Science, Wenzhou University, Wenzhou, China.

Aimin Hao (A)

College of Life and Environmental Science, Wenzhou University, Wenzhou, China.

Takahiro Kuba (T)

Central Water Authority Head Office, Phoenix, Mauritius.

Classifications MeSH