The investigation of in vitro effects of farnesol at different cancer cell lines.
TEM
anticancer
apoptosis
farnesol
Journal
Microscopy research and technique
ISSN: 1097-0029
Titre abrégé: Microsc Res Tech
Pays: United States
ID NLM: 9203012
Informations de publication
Date de publication:
Aug 2022
Aug 2022
Historique:
revised:
25
03
2022
received:
16
11
2021
accepted:
31
03
2022
pubmed:
12
4
2022
medline:
29
7
2022
entrez:
11
4
2022
Statut:
ppublish
Résumé
Farnesol (trans, trans-3,7,11-trimethyl-2,6,10-dodecatriene-1-ol) is an essential oil component that can be found in a variety of plants. In this study, in vitro effects of farnesol on human lung cancer A549 cell line, colon adenocarcinoma (Caco-2) cell line and healthy human lung epithelial BEAS-2B cell lines, WST-1 cytotoxicity test, dual staining of cell survival (DAPI-PI) analysis, micronucleus test, and transmission electron microscopy (TEM). Farnesol acted in a concentration-dependent manner at the dose ranges studied for cancer cell lines, and while at certain doses it reduced proliferation, interestingly at higher concentrations it induced growth more than the control. In the healthy BEAS-2B cell line, it was tested over a wide range of doses and at all studied concentrations, it did not suppress cellular growth, but rather increased. This seems promising in that farnesol harms cancer cell lines but does not cause significant damage to healthy cells. Obtained TEM data after treatment with farnesol at IC50 dose showed both autophagic and apoptotic findings in cancer cell lines compared to control, and normal findings exhibited in BEAS-2B cell line, cell survival, and micronucleus analyzes showed the presence of apoptotic findings and chromosomal damage as a result of farnesol application in cancer cell lines. RESEARCH HIGHLIGHTS: Farnesol has dose-dependent effects on human lung cancer and colon adenocarcinoma cell lines, with no significant damaging effects on healthy human lung epithelial cell lines. TEM, cell survival, and micronucleus findings support the findings of autophagic, apoptotic, and chromosomal damage on cancer cell lines.
Substances chimiques
Farnesol
4602-84-0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2760-2775Subventions
Organisme : Eskişehir Osmangazi Üniversitesi
ID : 2020-3138 (202041D13)
Informations de copyright
© 2022 Wiley Periodicals LLC.
Références
Alexander-Bryant, A. A., Vanden Berg-Foels, W. S., & Wen, X. (2013). Bioengineering strategies for designing targeted cancer therapies. Advances in Cancer Research, 118, 1-59. https://doi.org/10.1016/B978-0-12-407173-5.00002-9
Arslan, D. Ö., Korkmaz, G., & Gözüaçık, D. (2011). Autophagy: A cellular Stres and cell death mechanism. Acıbadem University Health Sciences Journal, 2(4), 184-194.
Ayla, Ş., Ötkem, G., & Parlayan, C. (2018). Significant increase in ZNF304 and decrease in CXCR4 gene expressions may alter anoikis in prostate cancer. Ege Journal of Medicine, 57(3), 157-162.
Ayrim, A., Dağ, İ., & Incesu, Z. (2017). Ultrastructural examination of intracellular calcium changes in ovarian cancer. Fresenıus Environmental Bulletin, 26(11), 6588-6598.
Bai, Q. X., & Zhang, X. Y. (2012). Curcumin enhances cytotoxic effects of bortezomib in human multiple myeloma H929 cells: Potential roles of NF-κB/JNK. International Journal of Molecular Sciences, 13(4), 4831-4838. https://doi.org/10.3390/ijms13044831
Bellisola, G., & Sorio, C. (2012). Infrared spectroscopy and microscopy in cancer research and diagnosis. American Journal of Cancer Research, 2(1), 1-21.
Bonikowski, R., Świtakowska, P., Sienkiewicz, M., & Zakłos-Szyda, M. (2015). Selected compounds structurally related to acyclic sesquiterpenoids and their antibacterial and cytotoxic activity. Molecules, 20(6), 11272-11296. https://doi.org/10.3390/molecules200611272
Brenner, C. (2019). Applications of bioinformatics in cancer. Cancers, 11(11), 1630. https://doi.org/10.3390/cancers11111630
Burke, Y. D., Ayoubi, A. S., Werner, S. R., McFarland, B. C., Heilman, D. K., Ruggeri, B. A., & Crowell, P. L. (2002). Effects of the isoprenoids perillyl alcohol and farnesol on apoptosis biomarkers in pancreatic cancer chemoprevention. Anticancer Research, 22(6A), 3127-3134.
Burke, Y. D., Stark, M. J., Roach, S. L., Sen, S. E., & Crowell, P. L. (1997). Inhibition of pancreatic cancer growth by the dietary isoprenoids farnesol and geraniol. Lipids, 32(2), 151-156.
Cho, S. Y., Lim, S., Ahn, K. S., Kwak, H. J., Park, J., & Um, J. Y. (2021). Farnesol induces mitochondrial/peroxisomal biogenesis and thermogenesis by enhancing the AMPK signaling pathway in vivo and in vitro. Pharmacological Research, 163, 105312. https://doi.org/10.1016/j.phrs.2020.105312
Crick, D. C., Andres, D. A., & Waechter, C. J. (1995). Farnesol is utilized for protein isoprenylation and the biosynthesis of cholesterol in mammalian cells. Biochemical and Biophysical Research Communications, 211(2), 590-599. https://doi.org/10.1006/bbrc.1995.1854
Dağlıoğlu, C., & Kaci, F. N. (2020). Long term effect of passive tumor targeted inorganic drug nanocarriers on lung healthy and cancer cells. Journal of Polytechnic. 23(3), 649-656. https://doi.org/10.2339/politeknik.496354
Fang, Y., Wu, C., Wang, Q., & Tang, J. (2019). Farnesol contributes to intestinal epithelial barrier function by enhancing tight junctions via the JAK/STAT3 signaling pathway in differentiated Caco-2 cells. Journal of Bioenergetics and Biomembranes, 51(6), 403-412. https://doi.org/10.1007/s10863-019-09817-4
Guideline, O. O. (2001). 425: Acute oral toxicity-Up-and-down procedure. OECD Guidelines for the Testing of Chemicals, 2, 12-16.
Gürsu, B. Y. (2020). Potential antibiofilm activity of farnesol-loaded poly (DL-lactide-co-glycolide)(PLGA) nanoparticles against Candida albicans. Journal of Analytical Science and Technology, 11(1), 1-10. https://doi.org/10.1186/s40543-020-00241-7
Hayashi, M. (2016). The micronucleus test-Most widely used in vivo genotoxicity test. Genes and Environment, 38(1), 1-6. https://doi.org/10.1186/s41021-016-0044-x
Ishiwata, T., Hasegawa, F., Michishita, M., Sasaki, N., Ishikawa, N., Takubo, K., Matsuda, Y., Arai, T., & Aida, J. (2018). Electron microscopic analysis of different cell types in human pancreatic cancer spheres. Oncology Letters, 15(2), 2485-2490. https://doi.org/10.3892/ol.2017.7554
Jahangir, T., Khan, T. H., Prasad, L., & Sultana, S. (2005). Alleviation of free radical mediated oxidative and genotoxic effects of cadmium by farnesol in Swiss albino mice. Redox Report, 10(6), 303-310. https://doi.org/10.1179/135100005X83671
Joo, J. H., & Jetten, A. M. (2010). Molecular mechanisms involved in farnesol-induced apoptosis. Cancer Letters, 287(2), 123-135. https://doi.org/10.1016/j.canlet.2009.05.015
Joo, J. H., Liao, G., Collins, J. B., Grissom, S. F., & Jetten, A. M. (2007). Farnesol-induced apoptosis in human lung carcinoma cells is coupled to the endoplasmic reticulum stress response. Cancer Research, 67(16), 7929-7936. https://doi.org/10.1158/0008-5472.CAN-07-0931
Joo, J. H., Ueda, E., Bortner, C. D., Yang, X. P., Liao, G., & Jetten, A. M. (2015). Farnesol activates the intrinsic pathway of apoptosis and the ATF4-ATF3-CHOP cascade of ER stress in human T lymphoblastic leukemia Molt4 cells. Biochemical Pharmacology, 97(3), 256-268. https://doi.org/10.1016/j.bcp.2015.08.086
Jung, Y. Y., Hwang, S. T., Sethi, G., Fan, L., Arfuso, F., & Ahn, K. S. (2018). Potential anti-inflammatory and anti-cancer properties of farnesol. Molecules, 23(11), 2827. https://doi.org/10.3390/molecules23112827
Kanagaraj, K., Raavi, V., Visweswaran, S., Selvan, T. G., Dhanashekaran, S., & Perumal, V. (2017). Technical note on cytokinesis-arrested binucleated cell and micronucleus assay. Journal of Radiation and Cancer Research, 8(4), 180. https://doi.org/10.4103/jrcr.jrcr_40_17
Khan, R., & Sultana, S. (2011). Farnesol attenuates 1, 2-dimethylhydrazine induced oxidative stress, inflammation and apoptotic responses in the colon of Wistar rats. Chemico-Biological Interactions, 192(3), 193-200. https://doi.org/10.1016/j.cbi.2011.03.009
Kirsch-Volders, M., Sofuni, T., Aardema, M., Albertini, S., Eastmond, D., Fenech, M., Ishidate, M., Jr., Kirchner, S., Lorge, E., Morita, T., Norppa, H., Surrallés, J., & Wakata, A. (2003). Report from the in vitro micronucleus assay working group. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 540(2), 153-163. https://doi.org/10.1016/j.mrgentox.2003.07.005
Kumar, R., Srivastava, R., & Srivastava, S. (2015). Detection and classification of cancer from microscopic biopsy images using clinically significant and biologically interpretable features. Journal of Medical Engineering, 2015, 1-14. https://doi.org/10.1155/2015/457906
Li, X., & Fan, Z. (2010). The epidermal growth factor receptor antibody cetuximab induces autophagy in cancer cells by downregulating HIF-1α and Bcl-2 and activating the beclin 1/hVps34 complex. Cancer Research, 70(14), 5942-5952. https://doi.org/10.1158/0008-5472.CAN-10-0157
Liu, Y., & Xu, J. (2019). High-resolution microscopy for imaging cancer pathobiology. Current Pathobiology Reports, 7(3), 85-96. https://doi.org/10.1007/s40139-019-00201-w
Liu, Z., Wang, Y., Zhao, S., Zhang, J., Wu, Y., & Zeng, S. (2015). Imidazole inhibits autophagy flux by blocking autophagic degradation and triggers apoptosis via increasing FoxO3a-Bim expression. International Journal of Oncology, 46(2), 721-731. https://doi.org/10.3892/ijo.2014.2771
Martin, T. A., Ye, L., Sanders, A. J., Lane, J., & Jiang, W. G. (2013). Cancer invasion and metastasis: Molecular and cellular perspective. In Madame curie bioscience database [Internet]. Landes Bioscience.
Miquel, K., Pradines, A., & Favre, G. (1996). Farnesol and geranylgeraniol induce actin cytoskeleton disorganization and apoptosis in A549 lung adenocarcinoma cells. Biochemical and Biophysical Research Communications, 225(3), 869-876. https://doi.org/10.1006/bbrc.1996.1265
Mondal, J., & Khuda-Bukhsh, A. R. (2020). Cisplatin and farnesol co-encapsulated PLGA nano-particles demonstrate enhanced anti-cancer potential against hepatocellular carcinoma cells in vitro. Molecular Biology Reports, 47(5), 3615-3628. https://doi.org/10.1007/s11033-020-05455-x
Nawaz, M., Mehmood, Z., Nazir, T., Naqvi, R. A., Rehman, A., Iqbal, M., & Saba, T. (2022). Skin cancer detection from dermoscopic images using deep learning and fuzzy k-means clustering. Microscopy Research and Technique, 85(1), 339-351. https://doi.org/10.1002/jemt.23908
Nguyen, S. T., Nguyen, H. T. L., & Truong, K. D. (2020). Comparative cytotoxic effects of methanol, ethanol and DMSO on human cancer cell lines. Biomedical Research and Therapy, 7(7), 3855-3859.
Nobili, S., Lippi, D., Witort, E., Donnini, M., Bausi, L., Mini, E., & Capaccioli, S. (2009). Natural compounds for cancer treatment and prevention. Pharmacological Research, 59(6), 365-378. https://doi.org/10.1016/j.phrs.2009.01.017
Nurgali, K., Jagoe, R. T., & Abalo, R. (2018). Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Frontiers in Pharmacology, 9, 245. https://doi.org/10.3389/fphar.2018.00245
Pant, A., Rondini, E. A., & Kocarek, T. A. (2019). Farnesol induces fatty acid oxidation and decreases triglyceride accumulation in steatotic HepaRG cells. Toxicology and Applied Pharmacology, 365, 61-70. https://doi.org/10.1016/j.taap.2019.01.003
Park, J. S., Kwon, J. K., Kim, H. R., Kim, H. J., Kim, B. S., & Jung, J. Y. (2014). Farnesol induces apoptosis of DU145 prostate cancer cells through the PI3K/Akt and MAPK pathways. International Journal of Molecular Medicine, 33(5), 1169-1176. https://doi.org/10.3892/ijmm.2014.1679
Queiroz, T. B., Santos, G. F., Ventura, S. C., Hiruma-Lima, C. A., Gaivã, I. O. M., & Maistro, E. L. (2017). Cytotoxic and genotoxic potential of geraniol in peripheral blood mononuclear cells and human hepatoma cell line (HepG2). Genetics and Molecular Research, 16(3). https://doi.org/10.4238/gmr16039777
Rioja, A., Pizzey, A. R., Marson, C. M., & Thomas, N. S. B. (2000). Preferential induction of apoptosis of leukaemic cells by farnesol. FEBS Letters, 467(2-3), 291-295. https://doi.org/10.1016/S0014-5793(00)01168-6
Sarı, C., Kolaylı, S., & Celep Eyüpoğlu, F. (2021). A comparative study of MTT and WST-1 assays in cytotoxicity analysis. The Medical Journal of Haydarpaşa Numune Training and Research Hospital, 61(3), 281-288. https://doi.org/10.14744/hnhj.2019.16443
Sebaugh, J. L. (2011). Guidelines for accurate EC50/IC50 estimation. Pharmaceutical Statistics, 10(2), 128-134. https://doi.org/10.1002/pst.426
Senapati, S., Mahanta, A. K., Kumar, S., & Maiti, P. (2018). Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy, 3(1), 1-19. https://doi.org/10.1038/s41392-017-0004-3
Simon, R. (2005). Bioinformatics in cancer therapeutics-Hype or hope? Nature Clinical Practice Oncology, 2(5), 223. https://doi.org/10.1038/ncponc0176
Spiess, A. N., & Neumeyer, N. (2010). An evaluation of R 2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: A Monte Carlo approach. BMC Pharmacology, 10(1), 1-11. https://doi.org/10.1186/1471-2210-10-6
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 71(3), 209-249. https://doi.org/10.3322/caac.21660
Tang, W., Wan, S., Yang, Z., Teschendorff, A. E., & Zou, Q. (2018). Tumor origin detection with tissue-specific miRNA and DNA methylation markers. Bioinformatics, 34(3), 398-406. https://doi.org/10.1093/bioinformatics/btx622
Treviranus, G. R. (2020). Psychoses by attacks from subverted mast cells: A role for arterial intramural flow badly steered by the nasal ganglia? Psychiatria Danubina, 32(Suppl. 1), 93-104.
Wang, X., He, H., Liu, J., Xie, S., & Han, J. (2020). Inhibiting roles of farnesol and HOG in morphological switching of Candida albicans. American Journal of Translational Research, 12(11), 6988-7001.
Wang, Y., & Wang, F. (2021). Post-translational modifications of deubiquitinating enzymes: Expanding the ubiquitin code. Frontiers in Pharmacology, 12, 685011. https://doi.org/10.3389/fphar.2021.685011
Wang, Y. L., Liu, H. F., Shi, X. J., & Wang, Y. (2018). Antiproliferative activity of Farnesol in HeLa cervical cancer cells is mediated via apoptosis induction, loss of mitochon-drial membrane potential (ΛΨm) and PI3K/Akt signalling pathway. Methods, 8, 11.
Wang, Z., Chen, H. T., Roa, W., & Finlay, W. (2003). Farnesol for aerosol inhalation: Nebulization and activity against human lung cancer cells. Journal of Pharmacy & Pharmaceutical Sciences, 6(1), 95-100.
Xu, Q., Zeng, Y., Tang, W., Peng, W., Xia, T., Li, Z., Teng, F., Li, W., & Guo, J. (2020). Multi-task joint learning model for segmenting and classifying tongue images using a deep neural network. IEEE Journal of Biomedical and Health Informatics, 24(9), 2481-2489. https://doi.org/10.1109/JBHI.2020.2986376
Yan, S., Yan, J., Liu, D., Li, X., Kang, Q., You, W., Zhang, J., Wang, L., Tian, Z., Lu, W., Liu, W., & He, W. (2021). A nano-predator of pathological MDMX construct by clearable supramolecular gold (I)-thiol-peptide complexes achieves safe and potent anti-tumor activity. Theranostics, 11(14), 6833-6846. https://doi.org/10.7150/thno.59020
Yan, T., Zeng, Q., Wang, L., Wang, N., Cao, H., Xu, X., & Chen, X. (2019). Harnessing the power of optical microscopic and macroscopic imaging for natural products as cancer therapeutics. Frontiers in Pharmacology, 10, 1438. https://doi.org/10.3389/fphar.2019.01438
Yapıcı, M., Gürsu, B. Y., & Dağ, İ. (2021). In vitro antibiofilm efficacy of farnesol against Candida species. International Microbiology, 24(2), 251-262. https://doi.org/10.1007/s10123-021-00162-4
Yazlovitskaya, E. M., & Melnykovych, G. (1995). Selective farnesol toxicity and translocation of protein kinase C in neoplastic HeLa-S3K and non-neoplastic CF-3 cells. Cancer Letters, 88(2), 179-183. https://doi.org/10.1016/0304-3835(94)03635-V
Zhang, C., & Wang, L. M. (2017). Inhibition of autophagy attenuated curcumol-induced apoptosis in MG-63 human osteosarcoma cells via Janus kinase signaling pathway. Oncology Letters, 14(6), 6387-6394. https://doi.org/10.3892/ol.2017.7010