Radiomics-Based Method for Predicting the Glioma Subtype as Defined by Tumor Grade, IDH Mutation, and 1p/19q Codeletion.

1p/19q codeletion IDH mutation glioblastomas gliomas radiomics tumor grade

Journal

Cancers
ISSN: 2072-6694
Titre abrégé: Cancers (Basel)
Pays: Switzerland
ID NLM: 101526829

Informations de publication

Date de publication:
31 Mar 2022
Historique:
received: 28 02 2022
revised: 25 03 2022
accepted: 28 03 2022
entrez: 12 4 2022
pubmed: 13 4 2022
medline: 13 4 2022
Statut: epublish

Résumé

Gliomas are among the most common types of central nervous system (CNS) tumors. A prompt diagnosis of the glioma subtype is crucial to estimate the prognosis and personalize the treatment strategy. The objective of this study was to develop a radiomics pipeline based on the clinical Magnetic Resonance Imaging (MRI) scans to noninvasively predict the glioma subtype, as defined based on the tumor grade, isocitrate dehydrogenase (IDH) mutation status, and 1p/19q codeletion status. A total of 212 patients from the public retrospective The Cancer Genome Atlas Low Grade Glioma (TCGA-LGG) and The Cancer Genome Atlas Glioblastoma Multiforme (TCGA-GBM) datasets were used for the experiments and analyses. Different settings in the radiomics pipeline were investigated to improve the classification, including the Z-score normalization, the feature extraction strategy, the image filter applied to the MRI images, the introduction of clinical information, ComBat harmonization, the classifier chain strategy, etc. Based on numerous experiments, we finally reached an optimal pipeline for classifying the glioma tumors. We then tested this final radiomics pipeline on the hold-out test data with 51 randomly sampled random seeds for reliable and robust conclusions. The results showed that, after tuning the radiomics pipeline, the mean AUC improved from 0.8935 (±0.0351) to 0.9319 (±0.0386), from 0.8676 (±0.0421) to 0.9283 (±0.0333), and from 0.6473 (±0.1074) to 0.8196 (±0.0702) in the test data for predicting the tumor grade, IDH mutation, and 1p/19q codeletion status, respectively. The mean accuracy for predicting the five glioma subtypes also improved from 0.5772 (±0.0816) to 0.6716 (±0.0655). Finally, we analyzed the characteristics of the radiomic features that best distinguished the glioma grade, the IDH mutation, and the 1p/19q codeletion status, respectively. Apart from the promising prediction of the glioma subtype, this study also provides a better understanding of the radiomics model development and interpretability. The results in this paper are replicable with our python codes publicly available in github.

Identifiants

pubmed: 35406550
pii: cancers14071778
doi: 10.3390/cancers14071778
pmc: PMC8997070
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : China Scholarship Council
ID : 201801810027

Références

Cancers (Basel). 2019 Jan 18;11(1):
pubmed: 30669406
Front Neurol. 2020 Oct 22;11:551771
pubmed: 33192984
J Magn Reson Imaging. 2018 Dec;48(6):1518-1528
pubmed: 29573085
J Neurooncol. 2019 Jan;141(1):223-233
pubmed: 30467813
Int J Biomed Imaging. 2018 May 8;2018:2512037
pubmed: 29853828
Cancer Med. 2018 Dec;7(12):5999-6009
pubmed: 30426720
Neuro Oncol. 2017 Jun 1;19(6):862-870
pubmed: 28339588
Cancer Res. 2017 Nov 1;77(21):e104-e107
pubmed: 29092951
Int J Comput Assist Radiol Surg. 2018 Apr;13(4):563-571
pubmed: 29270916
Hum Brain Mapp. 2010 May;31(5):798-819
pubmed: 20017133
Brainlesion. 2016;9556:144-155
pubmed: 28725877
Acta Neuropathol. 2016 Jun;131(6):803-20
pubmed: 27157931
J Nucl Med. 2022 Feb;63(2):172-179
pubmed: 34531263
J Digit Imaging. 2013 Dec;26(6):1045-57
pubmed: 23884657
Biostatistics. 2007 Jan;8(1):118-27
pubmed: 16632515
J Magn Reson Imaging. 2018 Oct;48(4):916-926
pubmed: 29394005
Radiology. 2016 Feb;278(2):563-77
pubmed: 26579733
Korean J Radiol. 2019 Sep;20(9):1381-1389
pubmed: 31464116
Eur Radiol. 2020 Feb;30(2):877-886
pubmed: 31691122
Magn Reson Imaging. 2012 Nov;30(9):1234-48
pubmed: 22898692
IEEE Trans Syst Man Cybern B Cybern. 2009 Feb;39(1):281-8
pubmed: 19068445
Cancer Biol Med. 2021 Feb 15;18(1):272-282
pubmed: 33628600
Eur Radiol. 2020 Apr;30(4):2142-2151
pubmed: 31828414
Sci Data. 2017 Sep 05;4:170117
pubmed: 28872634
J Cancer Res Clin Oncol. 2019 Mar;145(3):543-550
pubmed: 30719536
Nat Methods. 2021 Feb;18(2):203-211
pubmed: 33288961
Aging (Albany NY). 2019 Jan 29;11(2):673-696
pubmed: 30696801
Eur Radiol. 2019 Jul;29(7):3325-3337
pubmed: 30972543
Clin Cancer Res. 2019 Dec 15;25(24):7455-7462
pubmed: 31548344
Br J Radiol. 2011 Dec;84 Spec No 2:S90-106
pubmed: 22433833
Cancer Sci. 2012 Feb;103(2):269-73
pubmed: 22034964
Neuro Oncol. 2021 Feb 25;23(2):304-313
pubmed: 32706862
Eur Radiol. 2017 Aug;27(8):3509-3522
pubmed: 28004160
J Neurooncol. 2018 Dec;140(3):583-589
pubmed: 30145731
Sci Rep. 2018 Aug 6;8(1):11773
pubmed: 30082856
Clin Cancer Res. 2018 Sep 15;24(18):4429-4436
pubmed: 29789422
Cancers (Basel). 2021 Jun 15;13(12):
pubmed: 34203896
PeerJ. 2018 Nov 22;6:e5982
pubmed: 30498643
Nat Rev Clin Oncol. 2017 Dec;14(12):749-762
pubmed: 28975929
Med Sci Monit. 2017 May 07;23:2168-2178
pubmed: 28478462

Auteurs

Yingping Li (Y)

Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay, BIOMAPS, UMR1281 Inserm, CEA, CNRS, Université Paris-Saclay, 94805 Villejuif, France.
Centre de Vision Numérique, Institut National de Recherche en Informatique et en Automatique (INRIA), Université Paris-Saclay, 91190 Gif-sur-Yvette, France.

Samy Ammari (S)

Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay, BIOMAPS, UMR1281 Inserm, CEA, CNRS, Université Paris-Saclay, 94805 Villejuif, France.
Département d'Imagerie Médicale, Gustave Roussy Cancer Campus Grand Paris, Université Paris-Saclay, 94805 Villejuif, France.

Littisha Lawrance (L)

Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay, BIOMAPS, UMR1281 Inserm, CEA, CNRS, Université Paris-Saclay, 94805 Villejuif, France.
Département d'Imagerie Médicale, Gustave Roussy Cancer Campus Grand Paris, Université Paris-Saclay, 94805 Villejuif, France.

Arnaud Quillent (A)

Centre de Vision Numérique, Institut National de Recherche en Informatique et en Automatique (INRIA), Université Paris-Saclay, 91190 Gif-sur-Yvette, France.

Tarek Assi (T)

Département de Médecine Oncologique, Gustave Roussy Cancer Campus Grand Paris, Université Paris-Saclay, 94805 Villejuif, France.

Nathalie Lassau (N)

Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay, BIOMAPS, UMR1281 Inserm, CEA, CNRS, Université Paris-Saclay, 94805 Villejuif, France.
Département d'Imagerie Médicale, Gustave Roussy Cancer Campus Grand Paris, Université Paris-Saclay, 94805 Villejuif, France.

Emilie Chouzenoux (E)

Centre de Vision Numérique, Institut National de Recherche en Informatique et en Automatique (INRIA), Université Paris-Saclay, 91190 Gif-sur-Yvette, France.

Classifications MeSH