Interactions between the Nociceptin and Toll-like Receptor Systems.
cell cultures
inflammation
nociceptin
nociceptin receptor
pain
toll-like receptors
Journal
Cells
ISSN: 2073-4409
Titre abrégé: Cells
Pays: Switzerland
ID NLM: 101600052
Informations de publication
Date de publication:
23 03 2022
23 03 2022
Historique:
received:
17
02
2022
revised:
14
03
2022
accepted:
20
03
2022
entrez:
12
4
2022
pubmed:
13
4
2022
medline:
14
4
2022
Statut:
epublish
Résumé
Nociceptin and the nociceptin receptor (NOP) have been described as targets for treatment of pain and inflammation, whereas toll-like receptors (TLRs) play key roles in inflammation and impact opioid receptors and endogenous opioids expression. In this study, interactions between the nociceptin and TLR systems were investigated. Human THP-1 cells were cultured with or without phorbol myristate acetate (PMA 5 ng/mL), agonists specific for TLR2 (lipoteichoic acid, LTA 10 µg/mL), TLR4 (lipopolysaccharide, LPS 100 ng/mL), TLR7 (imiquimod, IMQ 10 µg/mL), TLR9 (oligonucleotide (ODN) 2216 1 µM), PMA+TLR agonists, or nociceptin (0.01−100 nM). Prepronociceptin (ppNOC), NOP, and TLR mRNAs were quantified by RT-qPCR. Proteins were measured using flow cytometry. PMA upregulated ppNOC mRNA, intracellular nociceptin, and cell membrane NOP proteins (all p < 0.05). LTA and LPS prevented PMA’s upregulating effects on ppNOC mRNA and nociceptin protein (both p < 0.05). IMQ and ODN 2216 attenuated PMA’s effects on ppNOC mRNA. PMA, LPS, IMQ, and ODN 2216 increased NOP protein levels (all p < 0.05). PMA+TLR agonists had no effects on NOP compared to PMA controls. Nociceptin dose-dependently suppressed TLR2, TLR4, TLR7, and TLR9 proteins (all p < 0.01). Antagonistic effects observed between the nociceptin and TLR systems suggest that the nociceptin system plays an anti-inflammatory role in monocytes under inflammatory conditions.
Identifiants
pubmed: 35406649
pii: cells11071085
doi: 10.3390/cells11071085
pmc: PMC8997556
pii:
doi:
Substances chimiques
Lipopolysaccharides
0
Opioid Peptides
0
RNA, Messenger
0
Toll-Like Receptor 2
0
Toll-Like Receptor 4
0
Toll-Like Receptor 7
0
Toll-Like Receptor 9
0
Toll-Like Receptors
0
Tetradecanoylphorbol Acetate
NI40JAQ945
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Références
J Immunol. 2001 Mar 15;166(6):3650-4
pubmed: 11238602
Br J Anaesth. 2015 Mar;114(3):364-6
pubmed: 25248647
Front Immunol. 2020 Jul 08;11:1455
pubmed: 32733481
Int Immunopharmacol. 2014 Nov;23(1):37-45
pubmed: 25130606
Nihon Yakurigaku Zasshi. 2021;156(3):139-144
pubmed: 33952840
PLoS One. 2012;7(8):e44232
pubmed: 22937165
Br J Anaesth. 2011 Apr;106(4):566-72
pubmed: 21324928
Br J Pharmacol. 2014 Aug;171(16):3777-800
pubmed: 24762001
Int Immunopharmacol. 2018 Jun;59:391-412
pubmed: 29730580
Pharmacol Ther. 2018 Apr;184:145-158
pubmed: 28987324
Pain. 2017 Sep;158(9):1813-1824
pubmed: 28644196
Biomolecules. 2021 May 31;11(6):
pubmed: 34072706
Eur J Pharmacol. 2012 May 15;683(1-3):285-93
pubmed: 22449384
Intensive Care Med. 2008 Dec;34(12):2284-90
pubmed: 18846364
Brain Behav Immun. 2012 Mar;26(3):480-8
pubmed: 22240038
Med Hypotheses. 2012 Dec;79(6):754-6
pubmed: 23062774
BMC Urol. 2021 Nov 13;21(1):156
pubmed: 34774029
Mol Pain. 2014 Feb 06;10:10
pubmed: 24499354
Int J Mol Sci. 2021 Nov 30;22(23):
pubmed: 34884757
Br J Anaesth. 2019 Jun;122(6):e136-e145
pubmed: 31010646
Infect Immun. 2004 Feb;72(2):1169-73
pubmed: 14742569
Br J Anaesth. 2016 Aug;117(2):250-7
pubmed: 27307289
Nanotechnology. 2013 May 24;24(20):205101
pubmed: 23598366
Br J Anaesth. 2018 Nov;121(5):1105-1114
pubmed: 30336855
J Orthop Surg Res. 2020 Jul 16;15(1):266
pubmed: 32677997
Mol Pain. 2019 Jan-Dec;15:1744806919828921
pubmed: 30665329
Biochemistry. 2003 Sep 9;42(35):10498-505
pubmed: 12950177
Anesth Analg. 2008 Mar;106(3):865-6, table of contents
pubmed: 18292431
Pharmacol Res. 2013 Apr;70(1):72-9
pubmed: 23353033
Br J Anaesth. 2008 Jun;100(6):810-4
pubmed: 18430746
Curr Neuropharmacol. 2004 Oct;2(4):395-402
pubmed: 18997874
Ment Health Clin. 2018 Jun 29;8(4):175-183
pubmed: 30155392
J Neurosci. 2019 Aug 14;39(33):6414-6424
pubmed: 31209174
PLoS One. 2013 Oct 30;8(10):e77799
pubmed: 24204973
Shock. 2004 Nov;22(5):403-9
pubmed: 15489631
Vitam Horm. 2015;97:241-66
pubmed: 25677775
PLoS One. 2013 Oct 04;8(10):e76682
pubmed: 24124588
J Pharmacol Exp Ther. 2014 Mar;348(3):401-9
pubmed: 24345466
Intensive Care Med. 2012 Feb;38(2):324-32
pubmed: 22183712
PLoS One. 2017 Apr 26;12(4):e0176460
pubmed: 28445506
PLoS One. 2013 Sep 16;8(9):e74138
pubmed: 24066107
Nat Rev Drug Discov. 2008 Aug;7(8):694-710
pubmed: 18670432
Anesth Analg. 2007 Oct;105(4):998-1005, table of contents
pubmed: 17898379
Curr Top Med Chem. 2020;20(31):2878-2888
pubmed: 32384033
Br J Pharmacol. 2013 Mar;168(6):1421-9
pubmed: 23083095
Br J Anaesth. 2016 Mar;116(3):423-9
pubmed: 26865135
Pain Ther. 2020 Jun;9(1):41-54
pubmed: 31994020
Shock. 2008 Oct;30 Suppl 1:73-7
pubmed: 18704004
Br J Anaesth. 2011 Jan;106(1):6-12
pubmed: 21138900
PLoS One. 2022 Jan 21;17(1):e0260880
pubmed: 35061679
Front Immunol. 2017 May 31;8:642
pubmed: 28620391
Diagn Pathol. 2009 Apr 16;4:12
pubmed: 19371402
Neural Plast. 2016;2016:5238730
pubmed: 26962463