In Vitro Hydrolytic Degradation of Polyester-Based Scaffolds under Static and Dynamic Conditions in a Customized Perfusion Bioreactor.
biomaterials
degradation
flow perfusion
hydrolysis
polyester-based materials
scaffolds
Journal
Materials (Basel, Switzerland)
ISSN: 1996-1944
Titre abrégé: Materials (Basel)
Pays: Switzerland
ID NLM: 101555929
Informations de publication
Date de publication:
31 Mar 2022
31 Mar 2022
Historique:
received:
14
02
2022
revised:
03
03
2022
accepted:
08
03
2022
entrez:
12
4
2022
pubmed:
13
4
2022
medline:
13
4
2022
Statut:
epublish
Résumé
Creating biofunctional artificial scaffolds could potentially meet the demand of patients suffering from bone defects without having to rely on donors or autologous transplantation. Three-dimensional (3D) printing has emerged as a promising tool to fabricate, by computer design, biodegradable polymeric scaffolds with high precision and accuracy, using patient-specific anatomical data. Achieving controlled degradation profiles of 3D printed polymeric scaffolds is an essential feature to consider to match them with the tissue regeneration rate. Thus, achieving a thorough characterization of the biomaterial degradation kinetics in physiological conditions is needed. Here, 50:50 blends made of poly(ε-caprolactone)-Poly(D,L-lactic-co-glycolic acid (PCL-PLGA) were used to fabricate cylindrical scaffolds by 3D printing (⌀ 7 × 2 mm). Their hydrolytic degradation under static and dynamic conditions was characterized and quantified. For this purpose, we designed and in-house fabricated a customized bioreactor. Several techniques were used to characterize the degradation of the parent polymers: X-ray Photoelectron Spectroscopy (XPS), Gel Permeation Chromatography (GPC), Scanning Electron Microscopy (SEM), evaluation of the mechanical properties, weigh loss measurements as well as the monitoring of the degradation media pH. Our results showed that flow perfusion is critical in the degradation process of PCL-PLGA based scaffolds implying an accelerated hydrolysis compared to the ones studied under static conditions, and up to 4 weeks are needed to observe significant degradation in polyester scaffolds of this size and chemical composition. Our degradation study and characterization methodology are relevant for an accurate design and to tailor the physicochemical properties of polyester-based scaffolds for bone tissue engineering.
Identifiants
pubmed: 35407903
pii: ma15072572
doi: 10.3390/ma15072572
pmc: PMC9000590
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : ITN Marie Skłodowska-Curie Actions
ID : 722535
Organisme : Gobierno de Aragón
ID : 2018-22
Organisme : Spanish Ministry of Economy and Competitiveness
ID : DPI2017-84780-C2-1-R
Organisme : Spanish Ministry of Economy and Competitiveness
ID : PID2020-113819RB-I00
Références
Tissue Eng Part B Rev. 2017 Oct;23(5):480-493
pubmed: 27912680
Biomed Mater. 2007 Sep;2(3):169-73
pubmed: 18458468
Biomaterials. 2009 Mar;30(7):1321-8
pubmed: 19091399
Biomaterials. 2003 Jan;24(1):181-94
pubmed: 12417192
Carbohydr Polym. 2017 Dec 1;177:210-216
pubmed: 28962760
Biomaterials. 2003 May;24(12):2077-82
pubmed: 12628828
Bone. 2015 Jan;70:93-101
pubmed: 25093266
In Vitro Cell Dev Biol Anim. 2005 Jul-Aug;41(7):188-96
pubmed: 16223333
Appl Biochem Biotechnol. 2018 Jun;185(2):555-563
pubmed: 29235057
J Colloid Interface Sci. 2018 Dec 1;531:126-137
pubmed: 30029031
Drug Deliv. 2020 Dec;27(1):1106-1114
pubmed: 32715779
J R Soc Interface. 2008 Oct 6;5(27):1137-58
pubmed: 18667387
J Biomech. 1974 May;7(3):271-5
pubmed: 4846264
Front Bioeng Biotechnol. 2021 Jun 24;9:682133
pubmed: 34249885
Materials (Basel). 2019 Feb 14;12(4):
pubmed: 30769821
Acta Biomater. 2020 Sep 1;113:130-143
pubmed: 32505800
J Tissue Eng Regen Med. 2018 Jun;12(6):1448-1468
pubmed: 29701908
World Health Organ Tech Rep Ser. 2003;919:i-x, 1-218, back cover
pubmed: 14679827
Front Bioeng Biotechnol. 2020 May 21;8:474
pubmed: 32509754
Mater Sci Eng C Mater Biol Appl. 2017 Sep 1;78:1246-1262
pubmed: 28575964
Biomaterials. 2018 Oct;180:143-162
pubmed: 30036727
J Mater Sci Mater Med. 2010 Jun;21(6):1969-78
pubmed: 20232234
J Funct Biomater. 2018 Mar 01;9(1):
pubmed: 29494503
Biomatter. 2012 Oct-Dec;2(4):167-75
pubmed: 23507883
Mater Sci Eng C Mater Biol Appl. 2017 Jan 1;70(Pt 1):812-823
pubmed: 27770959
J Control Release. 2011 May 30;152(1):168-76
pubmed: 21223989
Mol Med Rep. 2018 Aug;18(2):1335-1344
pubmed: 29845276
Biomaterials. 2014 Apr;35(13):4026-34
pubmed: 24529628
J Biomech. 2018 Oct 5;79:232-237
pubmed: 30149981
Nat Rev Rheumatol. 2015 Jan;11(1):45-54
pubmed: 25266456
Bioact Mater. 2017 Dec 01;3(3):278-314
pubmed: 29744467
Bone. 2016 May;86:119-30
pubmed: 26946132
J Hand Surg Am. 2019 Jun;44(6):497-505.e2
pubmed: 30704784
J Control Release. 2016 Sep 28;238:231-241
pubmed: 27288878
Bioact Mater. 2020 May 07;5(3):636-643
pubmed: 32405578
Int J Mol Sci. 2017 Dec 21;19(1):
pubmed: 29267207
Biotechnology (N Y). 1994 Jul;12(7):689-93
pubmed: 7764913
Mater Sci Eng C Mater Biol Appl. 2020 Sep;114:110991
pubmed: 32994018