Unifying Obstacle Detection, Recognition, and Fusion Based on the Polarization Color Stereo Camera and LiDAR for the ADAS.
non-repetitive scanning LiDAR
polarization-color-depth
sensor fusion
stereo camera
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
23 Mar 2022
23 Mar 2022
Historique:
received:
01
03
2022
revised:
17
03
2022
accepted:
21
03
2022
entrez:
12
4
2022
pubmed:
13
4
2022
medline:
14
4
2022
Statut:
epublish
Résumé
The perception module plays an important role in vehicles equipped with advanced driver-assistance systems (ADAS). This paper presents a multi-sensor data fusion system based on the polarization color stereo camera and the forward-looking light detection and ranging (LiDAR), which achieves the multiple target detection, recognition, and data fusion. The You Only Look Once v4 (YOLOv4) network is utilized to achieve object detection and recognition on the color images. The depth images are obtained from the rectified left and right images based on the principle of the epipolar constraints, then the obstacles are detected from the depth images using the MeanShift algorithm. The pixel-level polarization images are extracted from the raw polarization-grey images, then the water hazards are detected successfully. The PointPillars network is employed to detect the objects from the point cloud. The calibration and synchronization between the sensors are accomplished. The experiment results show that the data fusion enriches the detection results, provides high-dimensional perceptual information and extends the effective detection range. Meanwhile, the detection results are stable under diverse range and illumination conditions.
Identifiants
pubmed: 35408068
pii: s22072453
doi: 10.3390/s22072453
pmc: PMC9003213
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Natural Science Foundation of China
ID : U21B6001, 62020106002, 61735017, 61822510
Organisme : National Key Basic Research Program of China
ID : 2021YFC2401403
Organisme : Major scientific Research project of Zhejiang laboratory
ID : 2019MC0AD02
Références
Sensors (Basel). 2017 Aug 17;17(8):
pubmed: 28817069
Opt Express. 2021 Feb 15;29(4):4802-4820
pubmed: 33726028
IEEE Trans Neural Netw Learn Syst. 2019 Nov;30(11):3212-3232
pubmed: 30703038
Nature. 2015 May 28;521(7553):436-44
pubmed: 26017442
Rev Sci Instrum. 2019 Apr;90(4):044102
pubmed: 31042998
Sensors (Basel). 2020 Feb 17;20(4):
pubmed: 32079361
Opt Express. 2020 Nov 9;28(23):34536-34573
pubmed: 33182921
IEEE Trans Pattern Anal Mach Intell. 2021 Jan 12;PP:
pubmed: 33434124