Unifying Obstacle Detection, Recognition, and Fusion Based on the Polarization Color Stereo Camera and LiDAR for the ADAS.

non-repetitive scanning LiDAR polarization-color-depth sensor fusion stereo camera

Journal

Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366

Informations de publication

Date de publication:
23 Mar 2022
Historique:
received: 01 03 2022
revised: 17 03 2022
accepted: 21 03 2022
entrez: 12 4 2022
pubmed: 13 4 2022
medline: 14 4 2022
Statut: epublish

Résumé

The perception module plays an important role in vehicles equipped with advanced driver-assistance systems (ADAS). This paper presents a multi-sensor data fusion system based on the polarization color stereo camera and the forward-looking light detection and ranging (LiDAR), which achieves the multiple target detection, recognition, and data fusion. The You Only Look Once v4 (YOLOv4) network is utilized to achieve object detection and recognition on the color images. The depth images are obtained from the rectified left and right images based on the principle of the epipolar constraints, then the obstacles are detected from the depth images using the MeanShift algorithm. The pixel-level polarization images are extracted from the raw polarization-grey images, then the water hazards are detected successfully. The PointPillars network is employed to detect the objects from the point cloud. The calibration and synchronization between the sensors are accomplished. The experiment results show that the data fusion enriches the detection results, provides high-dimensional perceptual information and extends the effective detection range. Meanwhile, the detection results are stable under diverse range and illumination conditions.

Identifiants

pubmed: 35408068
pii: s22072453
doi: 10.3390/s22072453
pmc: PMC9003213
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National Natural Science Foundation of China
ID : U21B6001, 62020106002, 61735017, 61822510
Organisme : National Key Basic Research Program of China
ID : 2021YFC2401403
Organisme : Major scientific Research project of Zhejiang laboratory
ID : 2019MC0AD02

Références

Sensors (Basel). 2017 Aug 17;17(8):
pubmed: 28817069
Opt Express. 2021 Feb 15;29(4):4802-4820
pubmed: 33726028
IEEE Trans Neural Netw Learn Syst. 2019 Nov;30(11):3212-3232
pubmed: 30703038
Nature. 2015 May 28;521(7553):436-44
pubmed: 26017442
Rev Sci Instrum. 2019 Apr;90(4):044102
pubmed: 31042998
Sensors (Basel). 2020 Feb 17;20(4):
pubmed: 32079361
Opt Express. 2020 Nov 9;28(23):34536-34573
pubmed: 33182921
IEEE Trans Pattern Anal Mach Intell. 2021 Jan 12;PP:
pubmed: 33434124

Auteurs

Ningbo Long (N)

Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, China.

Han Yan (H)

Science and Technology on Space Intelligent Control Laboratory, Beijing Institute of Control Engineering, Beijing 100094, China.

Liqiang Wang (L)

Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, China.
College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.

Haifeng Li (H)

Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, China.
College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.

Qing Yang (Q)

Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, China.
College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature
Humans Algorithms Software Artificial Intelligence Computer Simulation

Unsupervised learning for real-time and continuous gait phase detection.

Dollaporn Anopas, Yodchanan Wongsawat, Jetsada Arnin
1.00
Humans Gait Neural Networks, Computer Unsupervised Machine Learning Walking

Classifications MeSH