Trade-Off Analysis of Hardware Architectures for Channel-Quality Classification Models.

FPGA channel quality classification hardware implementation machine learning

Journal

Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366

Informations de publication

Date de publication:
24 Mar 2022
Historique:
received: 22 02 2022
revised: 22 03 2022
accepted: 22 03 2022
entrez: 12 4 2022
pubmed: 13 4 2022
medline: 13 4 2022
Statut: epublish

Résumé

The latest generation of communication networks, such as SDVN (Software-defined vehicular network) and VANETs (Vehicular ad-hoc networks), should evaluate their communication channels to adapt their behavior. The quality of the communication in data networks depends on the behavior of the transmission channel selected to send the information. Transmission channels can be affected by diverse problems ranging from physical phenomena (e.g., weather, cosmic rays) to interference or faults inherent to data spectra. In particular, if the channel has a good transmission quality, we might maximize the bandwidth use. Otherwise, although fault-tolerant schemes degrade the transmission speed by solving errors or failures should be included, these schemes spend more energy and are slower due to requesting lost packets (recovery). In this sense, one of the open problems in communications is how to design and implement an efficient and low-power-consumption mechanism capable of sensing the quality of the channel and automatically making the adjustments to select the channel over which transmit. In this work, we present a trade-off analysis based on hardware implementation to identify if a channel has a low or high quality, implementing four machine learning algorithms: Decision Trees, Multi-Layer Perceptron, Logistic Regression, and Support Vector Machines. We obtained the best trade-off with an accuracy of 95.01% and efficiency of 9.83 Mbps/LUT (LookUp Table) with a hardware implementation of a Decision Tree algorithm with a depth of five.

Identifiants

pubmed: 35408115
pii: s22072497
doi: 10.3390/s22072497
pmc: PMC9003435
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Consejo Nacional de Ciencia y Tecnología
ID : 882
Organisme : Consejo Nacional de Ciencia y Tecnología
ID : 613

Références

Cent Eur J Oper Res. 2018;26(1):135-159
pubmed: 29375266
Sensors (Basel). 2019 Mar 06;19(5):
pubmed: 30845760
Sensors (Basel). 2019 Aug 31;19(17):
pubmed: 31480479
Sensors (Basel). 2022 Feb 07;22(3):
pubmed: 35161992

Auteurs

Alan Torres-Alvarado (A)

Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla 72840, Mexico.

Luis Alberto Morales-Rosales (LA)

Facultad de Ingeniería Civil, CONACYT-Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico.

Ignacio Algredo-Badillo (I)

Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla 72840, Mexico.

Francisco López-Huerta (F)

Facultad de Ingeniería de la Construcción y el Hábitat, Universidad Veracruzana, Boca del Río, Veracruz 94294, Mexico.

Mariana Lobato-Baez (M)

Higher Technological Institute of Libres, Libres, Puebla 73780, Mexico.

Juan Carlos López-Pimentel (JC)

Facultad de Ingeniería, Universidad Panamericana, Álvaro del Portillo 49, Mexico City 45010, Mexico.

Classifications MeSH