Infrared Visual Sensing Detection of Groove Width for Swing Arc Narrow Gap Welding.
dynamic clustering
global pattern recognition
groove width detection
narrow gap welding
visual sensing
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
26 Mar 2022
26 Mar 2022
Historique:
received:
05
03
2022
revised:
24
03
2022
accepted:
24
03
2022
entrez:
12
4
2022
pubmed:
13
4
2022
medline:
14
4
2022
Statut:
epublish
Résumé
To solve the current problem of poor weld formation due to groove width variation in swing arc narrow gap welding, an infrared passive visual sensing detection approach was developed in this work to measure groove width under intense welding interferences. This approach, called global pattern recognition, includes self-adaptive positioning of the ROI window, equal division thresholding and in situ dynamic clustering algorithms. Accordingly, the self-adaptive positioning method filters several of the nearest values of the arc's highest point of the vertical coordinate and groove's same-side edge position to determine the origin coordinates of the ROI window; the equal division thresholding algorithm then divides and processes the ROI window image to extract the groove edge and forms a raw data distribution of groove width in the data window. The in situ dynamic clustering algorithm dynamically classifies the preprocessed data in situ and finally detects the value of the groove width from the remaining true data. Experimental results show that the equal division thresholding algorithm can effectively reduce the influences of arc light and welding fume on the extraction of the groove edge. The in situ dynamic clustering algorithm can avoid disturbances from simulated welding spatters with diameters less than 2.19 mm, thus realizing the high-precision detection of the actual groove width and demonstrating stronger environmental adaptability of the proposed global pattern recognition approach.
Identifiants
pubmed: 35408170
pii: s22072555
doi: 10.3390/s22072555
pmc: PMC9002752
pii:
doi:
Substances chimiques
Air Pollutants, Occupational
0
Gases
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Natural Science Foundation of China
ID : 51875268
Organisme : National Natural Science Foundation of China
ID : 51905232
Références
Sensors (Basel). 2019 Mar 06;19(5):
pubmed: 30845763
Materials (Basel). 2019 Jan 22;12(3):
pubmed: 30678159
Sensors (Basel). 2018 Jul 25;18(8):
pubmed: 30044393
Sensors (Basel). 2016 Sep 15;16(9):
pubmed: 27649198
Sensors (Basel). 2020 Dec 25;21(1):
pubmed: 33375601