Estimation with Heisenberg-Scaling Sensitivity of a Single Parameter Distributed in an Arbitrary Linear Optical Network.
distributed parameter
gaussian metrology
heisenberg limit
quantum metrology
quantum sensing
squeezing
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
30 Mar 2022
30 Mar 2022
Historique:
received:
28
01
2022
revised:
22
03
2022
accepted:
27
03
2022
entrez:
12
4
2022
pubmed:
13
4
2022
medline:
13
4
2022
Statut:
epublish
Résumé
Quantum sensing and quantum metrology propose schemes for the estimation of physical properties, such as lengths, time intervals, and temperatures, achieving enhanced levels of precision beyond the possibilities of classical strategies. However, such an enhanced sensitivity usually comes at a price: the use of probes in highly fragile states, the need to adaptively optimise the estimation schemes to the value of the unknown property we want to estimate, and the limited working range, are some examples of challenges which prevent quantum sensing protocols to be practical for applications. This work reviews two feasible estimation schemes which address these challenges, employing easily realisable resources, i.e., squeezed light, and achieve the desired quantum enhancement of the precision, namely the Heisenberg-scaling sensitivity. In more detail, it is here shown how to overcome, in the estimation of any parameter affecting in a distributed manner multiple components of an arbitrary
Identifiants
pubmed: 35408271
pii: s22072657
doi: 10.3390/s22072657
pmc: PMC9003311
pii:
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Office of Naval Research Global
ID : N62909-18-1-2153
Références
Science. 2004 Nov 19;306(5700):1330-6
pubmed: 15550661
Phys Rev A Gen Phys. 1986 Jun;33(6):4033-4054
pubmed: 9897145
Phys Rev A. 1992 Dec 1;46(11):R6797-R6800
pubmed: 9908086
Phys Rev Lett. 1987 Nov 9;59(19):2153-2156
pubmed: 10035438
Phys Rev Lett. 2013 Oct 25;111(17):173601
pubmed: 24206489
Phys Rev Lett. 2006 Jan 13;96(1):010401
pubmed: 16486424
Phys Rev Lett. 2002 Sep 23;89(13):133602
pubmed: 12225027
Science. 2012 Sep 21;337(6101):1514-7
pubmed: 22997332