Pose2Sim: An End-to-End Workflow for 3D Markerless Sports Kinematics-Part 2: Accuracy.
OpenPose
OpenSim
accuracy
computer vision
concurrent validity
deep learning
kinematics
markerless motion capture
sports performance analysis
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
01 Apr 2022
01 Apr 2022
Historique:
received:
11
02
2022
revised:
21
03
2022
accepted:
27
03
2022
entrez:
12
4
2022
pubmed:
13
4
2022
medline:
14
4
2022
Statut:
epublish
Résumé
Two-dimensional deep-learning pose estimation algorithms can suffer from biases in joint pose localizations, which are reflected in triangulated coordinates, and then in 3D joint angle estimation. Pose2Sim, our robust markerless kinematics workflow, comes with a physically consistent OpenSim skeletal model, meant to mitigate these errors. Its accuracy was concurrently validated against a reference marker-based method. Lower-limb joint angles were estimated over three tasks (walking, running, and cycling) performed multiple times by one participant. When averaged over all joint angles, the coefficient of multiple correlation (CMC) remained above 0.9 in the sagittal plane, except for the hip in running, which suffered from a systematic 15° offset (CMC = 0.65), and for the ankle in cycling, which was partially occluded (CMC = 0.75). When averaged over all joint angles and all degrees of freedom, mean errors were 3.0°, 4.1°, and 4.0°, in walking, running, and cycling, respectively; and range of motion errors were 2.7°, 2.3°, and 4.3°, respectively. Given the magnitude of error traditionally reported in joint angles computed from a marker-based optoelectronic system, Pose2Sim is deemed accurate enough for the analysis of lower-body kinematics in walking, cycling, and running.
Identifiants
pubmed: 35408326
pii: s22072712
doi: 10.3390/s22072712
pmc: PMC9002957
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : French National Centre for Scientific Research
ID : Doctoral Thesis 2019
Organisme : ANR
ID : Equipex PIA 2011 (project Kinovis)
Organisme : ANR
ID : PPR STHP 2020 (project PerfAnalytics, ANR 20-STHP-0003)
Références
Med Biol Eng Comput. 1999 Mar;37(2):155-61
pubmed: 10396818
IEEE Trans Pattern Anal Mach Intell. 2021 Jan;43(1):172-186
pubmed: 31331883
Sci Rep. 2021 Oct 19;11(1):20673
pubmed: 34667207
IEEE Trans Biomed Eng. 2016 Oct;63(10):2068-79
pubmed: 27392337
Sensors (Basel). 2015 Oct 30;15(11):27569-89
pubmed: 26528979
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:4859-4862
pubmed: 34892297
J Biomech. 2003 Jul;36(7):999-1008
pubmed: 12757809
J Biomech. 2021 Oct 11;127:110665
pubmed: 34380101
Gait Posture. 2008 May;27(4):710-4
pubmed: 17723303
BMC Musculoskelet Disord. 2018 Nov 13;19(1):399
pubmed: 30424811
Sensors (Basel). 2021 Sep 30;21(19):
pubmed: 34640862
Cell Rep. 2021 Sep 28;36(13):109730
pubmed: 34592148
PLoS One. 2016 Jan 06;11(1):e0141028
pubmed: 26734761
PLoS Comput Biol. 2018 Jul 26;14(7):e1006223
pubmed: 30048444
Lancet. 1986 Feb 8;1(8476):307-10
pubmed: 2868172
IEEE Trans Biomed Eng. 2007 Nov;54(11):1940-50
pubmed: 18018689
Physiol Meas. 2013 Aug;34(8):N63-9
pubmed: 23893094
Sports Med. 2019 May;49(5):783-818
pubmed: 30903440
Appl Ergon. 1984 Dec;15(4):245-57
pubmed: 15676524
Sensors (Basel). 2021 Apr 20;21(8):
pubmed: 33924266
Sports Med. 2015 Jul;45(7):1065-81
pubmed: 25834998
J Appl Biomech. 2018 Jul 10;35(1):80–86
pubmed: 29989508
Gait Posture. 2010 Oct;32(4):559-63
pubmed: 20732816
Clin Biomech (Bristol, Avon). 1995 Jun;10(4):171-178
pubmed: 11415549
Nat Neurosci. 2018 Sep;21(9):1281-1289
pubmed: 30127430
Front Sports Act Living. 2020 May 27;2:50
pubmed: 33345042
Comput Methods Biomech Biomed Engin. 2019 Apr;22(5):451-464
pubmed: 30714401
IEEE Trans Pattern Anal Mach Intell. 2019 Jan;41(1):190-204
pubmed: 29990012
Sports Med. 1998 Oct;26(4):217-38
pubmed: 9820922
Gait Posture. 2010 Apr;31(4):540-2
pubmed: 20303272