Differences between Systems Using Optical and Capacitive Sensors in Treadmill-Based Spatiotemporal Analysis of Level and Sloping Gait.
gait analysis
inclined surfaces
inter-system agreement
treadmill walking
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
05 Apr 2022
05 Apr 2022
Historique:
received:
22
02
2022
revised:
27
03
2022
accepted:
02
04
2022
entrez:
12
4
2022
pubmed:
13
4
2022
medline:
14
4
2022
Statut:
epublish
Résumé
Modern technology has enabled researchers to analyze gait with great accuracy and in various conditions based on the needs of the trainees. The purpose of the study was to investigate the agreement between systems equipped with optical and capacitive sensors in the analysis of treadmill-based level and sloping gait. The spatiotemporal parameters of gait were measured in 30 healthy college-level students during barefoot walking on 0% (level), -10% and -20% (downhill) and +10% and +20% (uphill) slopes at hiking-related speeds using an optoelectric cell system and an instrumented treadmill. Inter-system agreement was assessed using the Intraclass Correlation Coefficients (ICCs) and the 95% limits of agreement. Our findings revealed excellent ICCs for the temporal and between moderate to excellent ICCs for the spatial parameters of gait. Walking downhill and on a 10% slope demonstrated better inter-system agreement compared to walking uphill and on a 20% slope. Inter-system agreement regarding the duration of gait phases was increased by increasing the number of LEDs used by the optoelectric cell system to detect the contact event. The present study suggests that systems equipped with optical and capacitive sensors can be used interchangeably in the treadmill-based spatiotemporal analysis of level and sloping gait.
Identifiants
pubmed: 35408404
pii: s22072790
doi: 10.3390/s22072790
pmc: PMC9003327
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Gait Posture. 2016 Oct;50:196-200
pubmed: 27644096
Sci Total Environ. 2021 Jun 25;775:145836
pubmed: 33631578
Front Sports Act Living. 2020 Oct 23;2:571385
pubmed: 33345131
Physiotherapy. 2011 Sep;97(3):182-9
pubmed: 21820535
BMC Musculoskelet Disord. 2013 Aug 21;14:249
pubmed: 23964707
Gait Posture. 2018 May;62:117-123
pubmed: 29547791
BMJ. 1996 Sep 21;313(7059):744
pubmed: 8819450
Gait Posture. 2022 Feb;92:315-320
pubmed: 34915402
Gait Posture. 2012 Jan;35(1):143-7
pubmed: 21962846
Gait Posture. 2016 Feb;44:259-64
pubmed: 27004668
Electroencephalogr Clin Neurophysiol. 1997 Aug;105(4):309-20
pubmed: 9284239
PLoS One. 2019 Nov 7;14(11):e0218908
pubmed: 31697684
Med Eng Phys. 2013 Apr;35(4):500-4
pubmed: 22818403
Gait Posture. 2022 Jan;91:73-78
pubmed: 34653877
Eur J Appl Physiol. 2002 Apr;86(6):503-8
pubmed: 11944098
BMC Geriatr. 2018 Feb 20;18(1):52
pubmed: 29458330
Gait Posture. 2012 Jul;36(3):444-8
pubmed: 22555061
J Sports Sci Med. 2016 May 23;15(2):239-46
pubmed: 27274660
Gait Posture. 2021 Oct;90:434-440
pubmed: 34597985
Biol Sport. 2020 Sep;37(3):247-253
pubmed: 32879546
Sci Rep. 2019 Mar 26;9(1):5232
pubmed: 30914746
J Appl Physiol (1985). 2008 Mar;104(3):747-55
pubmed: 18048582
Am J Phys Med Rehabil. 2015 Nov;94(11):931-40
pubmed: 26390397
J Strength Cond Res. 2019 Dec;33(12):3438-3443
pubmed: 30640307
Gait Posture. 2020 Jul;80:274-279
pubmed: 32563727
Foot Ankle Surg. 2019 Aug;25(4):517-522
pubmed: 30321953
Med Sci Monit. 2014 Jul 14;20:1210-9
pubmed: 25017613
BMJ. 2009 Apr 06;338:a3166
pubmed: 19349342
J Biomech Eng. 2019 Jan 1;141(1):
pubmed: 30285079
Sensors (Basel). 2021 Aug 17;21(16):
pubmed: 34450953
Gait Posture. 2013 Jul;38(3):380-4
pubmed: 23337733
Int J Sports Physiol Perform. 2012 Jun;7(2):175-82
pubmed: 22634967
J Physiol Sci. 2019 Jan;69(1):31-38
pubmed: 29679309
J Phys Ther Sci. 2014 Jan;26(1):81-5
pubmed: 24567681
Sensors (Basel). 2012;12(7):9884-912
pubmed: 23012576
J Int Med Res. 2021 Aug;49(8):3000605211039386
pubmed: 34433330