Multiomics implicate gut microbiota in altered lipid and energy metabolism in Parkinson's disease.
Journal
NPJ Parkinson's disease
ISSN: 2373-8057
Titre abrégé: NPJ Parkinsons Dis
Pays: United States
ID NLM: 101675390
Informations de publication
Date de publication:
11 Apr 2022
11 Apr 2022
Historique:
received:
13
07
2021
accepted:
04
03
2022
entrez:
12
4
2022
pubmed:
13
4
2022
medline:
13
4
2022
Statut:
epublish
Résumé
We aimed to investigate the link between serum metabolites, gut bacterial community composition, and clinical variables in Parkinson's disease (PD) and healthy control subjects (HC). A total of 124 subjects were part of the study (63 PD patients and 61 HC subjects). 139 metabolite features were found to be predictive between the PD and Control groups. No associations were found between metabolite features and within-PD clinical variables. The results suggest alterations in serum metabolite profiles in PD, and the results of correlation analysis between metabolite features and microbiota suggest that several bacterial taxa are associated with altered lipid and energy metabolism in PD.
Identifiants
pubmed: 35411052
doi: 10.1038/s41531-022-00300-3
pii: 10.1038/s41531-022-00300-3
pmc: PMC9001728
doi:
Types de publication
Journal Article
Langues
eng
Pagination
39Subventions
Organisme : Academy of Finland (Suomen Akatemia)
ID : 295724, 310835
Informations de copyright
© 2022. The Author(s).
Références
Skjærbæk, C., Knudsen, K., Horsager, J. & Borghammer, P. Gastrointestinal dysfunction in Parkinson’s disease. J. Clin. Med 10, 3 493 (2021).
pubmed: 33572547
doi: 10.3390/jcm10030493
Scheperjans et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord. 30, 350–8 (2015).
pubmed: 25476529
doi: 10.1002/mds.26069
Boertien, J. M., Pereira, P. A. B., Aho, V. T. E. & Scheperjans, F. Increasing comparability and utility of gut microbiome studies in Parkinson’s disease: a systematic review. J. Parkinsons Dis. 9, S297–S312 (2019).
pubmed: 31498131
pmcid: 6839453
doi: 10.3233/JPD-191711
Cirstea et al. Microbiota composition and metabolism are associated with gut function in Parkinson’s disease. Mov. Disord. 35, 1208–1217 (2020).
pubmed: 32357258
doi: 10.1002/mds.28052
Tan et al. Gut microbial ecosystem in parkinson disease: new clinicobiological insights from multi-omics. Ann. Neurol. 89, 546–559 (2021).
pubmed: 33274480
doi: 10.1002/ana.25982
Aho et al. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Mol. Neurodegener. 16, 6 (2021).
pubmed: 33557896
pmcid: 7869249
doi: 10.1186/s13024-021-00427-6
Unger et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat. Disord. 32, 66–72 (2016).
pubmed: 27591074
doi: 10.1016/j.parkreldis.2016.08.019
Hertel et al. Integrated analyses of microbiome and longitudinal metabolome data reveal microbial-host interactions on sulfur metabolism in Parkinson’s disease. Cell Rep. 29, 1767–1777.e8 (2019).
pubmed: 31722195
pmcid: 6856723
doi: 10.1016/j.celrep.2019.10.035
Shin, C., Lim, Y., Lim, H. & Ahn, T. B. Plasma short-chain fatty acids in patients with Parkinson’s disease. Mov. Disord. 35, 1021–1027 (2020).
pubmed: 32154946
doi: 10.1002/mds.28016
Vascellari et al. Gut microbiota and metabolome alterations associated with Parkinson’s disease. mSystems 5, 5 e00561–20 (2020).
pubmed: 32934117
doi: 10.1128/mSystems.00561-20
Tan et al. Gut microbial ecosystem in Parkinson disease: new clinicobiological insights from multi-omics. Ann. Neurol. 89, 546–559 (2021).
pubmed: 33274480
doi: 10.1002/ana.25982
Yan et al. Alterations of gut microbiota and metabolome with Parkinson’s disease. Micro. Pathog. 160, 105187 (2021).
doi: 10.1016/j.micpath.2021.105187
Mertsalmi et al. More than constipation—bowel symptoms in Parkinson’s disease and their connection to gut microbiota. Eur. J. Neurol. 24, 1375–1383 (2017).
pubmed: 28891262
doi: 10.1111/ene.13398
Aho et al. Gut microbiota in Parkinson’s disease: temporal stability and relations to disease progression. EBioMedicine 44, 691–707 (2019).
pubmed: 31221587
pmcid: 6606744
doi: 10.1016/j.ebiom.2019.05.064
Pereira et al. Oral and nasal microbiota in Parkinson’s disease. Parkinsonism Relat. Disord. 38, 61–67 (2017).
pubmed: 28259623
doi: 10.1016/j.parkreldis.2017.02.026
Wishart et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46, D608–D617 (2018).
pubmed: 29140435
doi: 10.1093/nar/gkx1089
Sud et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 35(Database issue), D527–32 (2007).
pubmed: 17098933
doi: 10.1093/nar/gkl838
Sumner et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3, 211–221 (2007).
pubmed: 24039616
pmcid: 3772505
doi: 10.1007/s11306-007-0082-2
Sinclair et al. Metabolomics of sebum reveals lipid dysregulation in Parkinson’s disease. Nat. Commun. 12, 1592 (2021).
pubmed: 33707447
pmcid: 7952564
doi: 10.1038/s41467-021-21669-4
Alecu, I. & Bennett, S. A. L. Dysregulated lipid metabolism and its role in α-synucleinopathy in Parkinson’s disease. Front Neurosci. 13, 328 (2019).
pubmed: 31031582
pmcid: 6470291
doi: 10.3389/fnins.2019.00328
Lin, G., Wang, L., Marcogliese, P. C. & Bellen, H. J. Sphingolipids in the pathogenesis of Parkinson’s disease and Parkinsonism. Trends Endocrinol. Metab. 30, 106–117 (2019).
pubmed: 30528460
doi: 10.1016/j.tem.2018.11.003
Hallett, P. J., Engelender, S. & Isacson, O. Lipid and immune abnormalities causing age-dependent neurodegeneration and Parkinson’s disease. J. Neuroinflammation 16, 153 (2019).
pubmed: 31331333
pmcid: 6647317
doi: 10.1186/s12974-019-1532-2
Xicoy, H., Wieringa, B. & Martens, G. J. M. The role of lipids in Parkinson’s disease. Cells 8, 27 (2019).
pmcid: 6356353
doi: 10.3390/cells8010027
Alessenko, A. V. & Albi, E. Exploring sphingolipid implications in neurodegeneration. Front Neurol. 11, 437 (2020).
pubmed: 32528400
pmcid: 7254877
doi: 10.3389/fneur.2020.00437
Hu et al. Integrated metabolomics and proteomics analysis reveals plasma lipid metabolic disturbances in patients with Parkinson’s disease. Front Mol. Neurosci. 13, 80 (2020).
pubmed: 32714143
pmcid: 7344253
doi: 10.3389/fnmol.2020.00080
van Kruining et al. Sphingolipids as prognostic biomarkers of neurodegeneration, neuroinflammation, and psychiatric diseases and their emerging role in lipidomic investigation methods. Adv. Drug Deliv. Rev. 159, 232–244 (2020).
pubmed: 32360155
pmcid: 7665829
doi: 10.1016/j.addr.2020.04.009
Rodriguez-Cuenca, S., Pellegrinelli, V., Campbell, M., Oresic, M. & Vidal-Puig, A. Sphingolipids and glycerophospholipids—The “ying and yang” of lipotoxicity in metabolic diseases. Prog. Lipid Res. 66, 14–29 (2017).
pubmed: 28104532
doi: 10.1016/j.plipres.2017.01.002
Saiki et al. Decreased long-chain acylcarnitines from insufficient β-oxidation as potential early diagnostic markers for Parkinson’s disease. Sci. Rep. 7, 7328 (2017).
pubmed: 28779141
pmcid: 5544708
doi: 10.1038/s41598-017-06767-y
Rosario et al. Systematic analysis of gut microbiome reveals the role of bacterial folate and homocysteine metabolism in Parkinson’s disease. Cell Rep. 34, 108807 (2021).
pubmed: 33657381
doi: 10.1016/j.celrep.2021.108807
da Silva, R. P., Kelly, K. B., Al Rajabi, A. & Jacobs, R. L. Novel insights on interactions between folate and lipid metabolism. Biofactors 40, 277–83 (2014).
pubmed: 24353111
doi: 10.1002/biof.1154
Shao et al. Comprehensive metabolic profiling of Parkinson’s disease by liquid chromatography-mass spectrometry. Mol. Neurodegener. 16, 4 (2021).
pubmed: 33485385
pmcid: 7825156
doi: 10.1186/s13024-021-00425-8
Zhao et al. Potential biomarkers of Parkinson’s disease revealed by plasma metabolic profiling. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1081-1082, 101–108 (2018).
doi: 10.1016/j.jchromb.2018.01.025
Crooks et al. Carnitine levels and mutations in the SLC22A5 gene in Faroes patients with Parkinson’s disease. Neurosci. Lett. 675, 116–119 (2018).
pubmed: 29614331
doi: 10.1016/j.neulet.2018.03.064
Jiménez-Jiménez et al. Cerebrospinal fluid carnitine levels in patients with Parkinson’s disease. J. Neurol. Sci. 145, 183–5 (1997).
pubmed: 9094047
doi: 10.1016/S0022-510X(96)00259-6
Utami, O. C., Kurniawati, Y., Diba, S. & Saleh, M. I. Correlation between serum lipid profile and acne vulgaris severity. J. Phys.: Conf. Ser. 1246, 012066 (2019).
Camera E, Picardo M. Lipids in serum and sebum, Pathogenesis and Treatment of Acne and Rosacea (Springer, 2013)
Rattray et al. Metabolic dysregulation in vitamin E and carnitine shuttle energy mechanisms associate with human frailty. Nat. Commun. 10, 5027 (2019).
pubmed: 31690722
pmcid: 6831565
doi: 10.1038/s41467-019-12716-2
Fariss, M. W. & Zhang, J. G. Vitamin E therapy in Parkinson’s disease. Toxicology 189, 129–46 (2003).
pubmed: 12821288
doi: 10.1016/S0300-483X(03)00158-6
Etminan, M., Gill, S. S. & Samii, A. Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson’s disease: a meta-analysis. Lancet Neurol. 4, 362–5 (2005).
pubmed: 15907740
doi: 10.1016/S1474-4422(05)70097-1
Schirinzi et al. Dietary Vitamin E as a protective factor for Parkinson’s Disease: clinical and experimental evidence. Front Neurol. 10, 148 (2019).
pubmed: 30863359
pmcid: 6399121
doi: 10.3389/fneur.2019.00148
Nikam, S., Nikam, P., Ahaley, S. K. & Sontakke, A. V. Oxidative stress in Parkinson’s disease. Indian J. Clin. Biochem 24, 98–101 (2009).
pubmed: 23105815
pmcid: 3453463
doi: 10.1007/s12291-009-0017-y
Fernández-Irigoyen, J., Cartas-Cejudo, P., Iruarrizaga-Lejarreta, M. & Santamaría, E. Alteration in the cerebrospinal fluid lipidome in Parkinson’s disease: a post-mortem pilot study. Biomedicines 9, 491 (2021).
pubmed: 33946950
pmcid: 8146703
doi: 10.3390/biomedicines9050491
Fanning, S., Selkoe, D. & Dettmer, U. Parkinson’s disease: proteinopathy or lipidopathy? NPJ Parkinsons Dis. 6, 3 (2020).
pubmed: 31909184
pmcid: 6941970
doi: 10.1038/s41531-019-0103-7
Erskine et al. Lipids, lysosomes and mitochondria: insights into Lewy body formation from rare monogenic disorders. Acta Neuropathol. 141, 511–526 (2021).
pubmed: 33515275
pmcid: 7952289
doi: 10.1007/s00401-021-02266-7
Lin et al. Phospholipase PLA2G6, a Parkinsonism-associated gene, affects Vps26 and Vps35, retromer function, and ceramide levels, similar to α-synuclein gain. Cell Metab. 28, 605–618.e6 (2018).
pubmed: 29909971
doi: 10.1016/j.cmet.2018.05.019
Belarbi et al. Glycosphingolipids and neuroinflammation in Parkinson’s disease. Mol. Neurodegener. 15, 59 (2020).
pubmed: 33069254
pmcid: 7568394
doi: 10.1186/s13024-020-00408-1
Zhu, M., Li, J. & Fink, A. L. The association of alpha-synuclein with membranes affects bilayer structure, stability, and fibril formation. J. Biol. Chem. 278, 40186–97 (2003).
pubmed: 12885775
doi: 10.1074/jbc.M305326200
Madine, J., Doig, A. J. & Middleton, D. A. A study of the regional effects of alpha-synuclein on the organization and stability of phospholipid bilayers. Biochemistry 45, 5783–92 (2006).
pubmed: 16669622
doi: 10.1021/bi052151q
Rawat, A., Langen, R. & Varkey, J. Membranes as modulators of amyloid protein misfolding and target of toxicity. Biochim Biophys. Acta Biomembr. 1860, 1863–1875 (2018).
pubmed: 29702073
pmcid: 6203680
doi: 10.1016/j.bbamem.2018.04.011
Jo, E., McLaurin, J., Yip, C. M., St George-Hyslop, P. & Fraser, P. E. alpha-Synuclein membrane interactions and lipid specificity. J. Biol. Chem. 275, 34328–34 (2000).
pubmed: 10915790
doi: 10.1074/jbc.M004345200
Broersen, K., van den Brink, D., Fraser, G., Goedert, M. & Davletov, B. Alpha-synuclein adopts an alpha-helical conformation in the presence of polyunsaturated fatty acids to hinder micelle formation. Biochemistry 45, 15610–6 (2006).
pubmed: 17176082
doi: 10.1021/bi061743l
De Franceschi et al. Molecular insights into the interaction between alpha-synuclein and docosahexaenoic acid. J. Mol. Biol. 394, 94–107 (2009).
pubmed: 19747490
doi: 10.1016/j.jmb.2009.09.008
De Franceschi et al. Structural and morphological characterization of aggregated species of α-synuclein induced by docosahexaenoic acid. J. Biol. Chem. 286, 22262–74 (2011).
pubmed: 21527634
pmcid: 3121372
doi: 10.1074/jbc.M110.202937
Ludtmann et al. Monomeric alpha-synuclein exerts a physiological role on brain ATP synthase. J. Neurosci. 36, 10510–10521 (2016).
pubmed: 27733604
pmcid: 5059426
doi: 10.1523/JNEUROSCI.1659-16.2016
Henzi, V., Reichling, D. B., Helm, S. W. & MacDermott, A. B. L-proline activates glutamate and glycine receptors in cultured rat dorsal horn neurons. Mol. Pharm. 41, 793–801 (1992).
Wu et al. Proline metabolism in the conceptus: implications for fetal growth and development. Amino Acids 35, 691–702 (2008).
pubmed: 18330497
doi: 10.1007/s00726-008-0052-7
Ji, Y., Guo, Q., Yin, Y., Blachier, F. & Kong, X. Dietary proline supplementation alters colonic luminal microbiota and bacterial metabolite composition between days 45 and 70 of pregnancy in Huanjiang mini-pigs. J. Anim. Sci. Biotechnol. 9, 18 (2018).
pubmed: 29423216
pmcid: 5789534
doi: 10.1186/s40104-018-0233-5
Dunn et al. Human serum metabolome (HUSERMET) consortium. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060–83 (2011).
pubmed: 21720319
doi: 10.1038/nprot.2011.335
Begley et al. HUSERMET Consortium, Goodacre R, Kell DB. Development and performance of a gas chromatography-time-of-flight mass spectrometry analysis for large-scale nontargeted metabolomic studies of human serum. Anal. Chem. 81, 7038–46 (2009).
pubmed: 19606840
doi: 10.1021/ac9011599
Chambers et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–20 (2012).
pubmed: 23051804
pmcid: 3471674
doi: 10.1038/nbt.2377
RStudio Team. RStudio: Integrated Development Environment for R. Boston, MA. Available from: http://www.rstudio.com/ (2015).
Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–87 (2006).
pubmed: 16448051
doi: 10.1021/ac051437y
Domingo-Almenara et al. eRah: a computational tool integrating spectral deconvolution and alignment with quantification and identification of metabolites in GC/MS-based metabolomics. Anal. Chem. 88, 9821–9829 (2016).
pubmed: 27584001
doi: 10.1021/acs.analchem.6b02927
Duan, K. B., Rajapakse, J. C., Wang, H. & Azuaje, F. Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE Trans. Nanobioscience 4, 228–34 (2005).
pubmed: 16220686
doi: 10.1109/TNB.2005.853657
Kurlowicz, L. & Greenberg, S. A. The geriatric depression scale (GDS). Am. J. Nurs. 107, 67–68 (2007).
doi: 10.1097/01.NAJ.0000292207.37066.2f
Ombaugh, T. N., McDowell, I., Kristjansson, B. & Hubley, A. M. Mini-mental state examination (MMSE) and the modified MMSE (3MS): a psychometric comparison and normative data. Psychological Assess. 8, 48–59 (1996).
doi: 10.1037/1040-3590.8.1.48
Chaudhuri, K. R. & Martinez-Martin, P. Quantitation of non-motor symptoms in Parkinson’s disease. Eur. J. Neurol. 15(Suppl 2), 2–7 (2008).
pubmed: 18702736
doi: 10.1111/j.1468-1331.2008.02212.x
Stiasny-Kolster et al. The REM sleep behavior disorder screening questionnaire-a new diagnostic instrument. Mov. Disord. 22, 2386–93 (2007).
pubmed: 17894337
doi: 10.1002/mds.21740
Rome Foundation. Guidelines-Rome III diagnostic criteria for functional gastrointestinal disorders. J. Gastrointestin Liver Dis. 15, 307–12 (2006).
Agachan, F., Chen, T., Pfeifer, J., Reissman, P. & Wexner, S. D. A constipation scoring system to simplify evaluation and management of constipated patients. Dis. Colon Rectum 39, 681–5 (1996).
pubmed: 8646957
doi: 10.1007/BF02056950
Lloret et al. Validation of a new scale for the evaluation of sialorrhea in patients with Parkinson’s disease. Mov. Disord. 22, 107–11 (2007).
doi: 10.1002/mds.21152
Lam et al. Simple clinical tests may predict severe oropharyngeal dysphagia in Parkinson’s disease. Mov. Disord. 22, 640–4 (2007).
pubmed: 17266075
doi: 10.1002/mds.21362
Li et al. Predicting network activity from high throughput metabolomics. PLoS Comput. Biol. 9, e1003123 (2013).
pubmed: 23861661
pmcid: 3701697
doi: 10.1371/journal.pcbi.1003123
Chong, J. & Xia, J. MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 34, 4313–4314 (2018).
pubmed: 29955821
pmcid: 6289126
doi: 10.1093/bioinformatics/bty528
Silverman, J. D., Roche, K., Holmes, Z. C., David, L. A. & Mukherjee, S. Bayesian Multinomial Logistic Normal Models through Marginally Latent Matrix-T Processes. J. Mach. Learn. Res. 23, 1–42 (2022).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).
Aitchison, J. The Statistical Analysis of Compositional Data. (Monographs on statistics and applied probability, Chapman and Hall, London, New York, 1986).
doi: 10.1007/978-94-009-4109-0
Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).
pubmed: 23028285
pmcid: 3447976
doi: 10.1371/journal.pcbi.1002687
Shannon et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–504 (2003).
pubmed: 14597658
pmcid: 403769
doi: 10.1101/gr.1239303
Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
pubmed: 10592173
pmcid: 102409
doi: 10.1093/nar/28.1.27