Multiomics implicate gut microbiota in altered lipid and energy metabolism in Parkinson's disease.


Journal

NPJ Parkinson's disease
ISSN: 2373-8057
Titre abrégé: NPJ Parkinsons Dis
Pays: United States
ID NLM: 101675390

Informations de publication

Date de publication:
11 Apr 2022
Historique:
received: 13 07 2021
accepted: 04 03 2022
entrez: 12 4 2022
pubmed: 13 4 2022
medline: 13 4 2022
Statut: epublish

Résumé

We aimed to investigate the link between serum metabolites, gut bacterial community composition, and clinical variables in Parkinson's disease (PD) and healthy control subjects (HC). A total of 124 subjects were part of the study (63 PD patients and 61 HC subjects). 139 metabolite features were found to be predictive between the PD and Control groups. No associations were found between metabolite features and within-PD clinical variables. The results suggest alterations in serum metabolite profiles in PD, and the results of correlation analysis between metabolite features and microbiota suggest that several bacterial taxa are associated with altered lipid and energy metabolism in PD.

Identifiants

pubmed: 35411052
doi: 10.1038/s41531-022-00300-3
pii: 10.1038/s41531-022-00300-3
pmc: PMC9001728
doi:

Types de publication

Journal Article

Langues

eng

Pagination

39

Subventions

Organisme : Academy of Finland (Suomen Akatemia)
ID : 295724, 310835

Informations de copyright

© 2022. The Author(s).

Références

Skjærbæk, C., Knudsen, K., Horsager, J. & Borghammer, P. Gastrointestinal dysfunction in Parkinson’s disease. J. Clin. Med 10, 3 493 (2021).
pubmed: 33572547 doi: 10.3390/jcm10030493
Scheperjans et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord. 30, 350–8 (2015).
pubmed: 25476529 doi: 10.1002/mds.26069
Boertien, J. M., Pereira, P. A. B., Aho, V. T. E. & Scheperjans, F. Increasing comparability and utility of gut microbiome studies in Parkinson’s disease: a systematic review. J. Parkinsons Dis. 9, S297–S312 (2019).
pubmed: 31498131 pmcid: 6839453 doi: 10.3233/JPD-191711
Cirstea et al. Microbiota composition and metabolism are associated with gut function in Parkinson’s disease. Mov. Disord. 35, 1208–1217 (2020).
pubmed: 32357258 doi: 10.1002/mds.28052
Tan et al. Gut microbial ecosystem in parkinson disease: new clinicobiological insights from multi-omics. Ann. Neurol. 89, 546–559 (2021).
pubmed: 33274480 doi: 10.1002/ana.25982
Aho et al. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Mol. Neurodegener. 16, 6 (2021).
pubmed: 33557896 pmcid: 7869249 doi: 10.1186/s13024-021-00427-6
Unger et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat. Disord. 32, 66–72 (2016).
pubmed: 27591074 doi: 10.1016/j.parkreldis.2016.08.019
Hertel et al. Integrated analyses of microbiome and longitudinal metabolome data reveal microbial-host interactions on sulfur metabolism in Parkinson’s disease. Cell Rep. 29, 1767–1777.e8 (2019).
pubmed: 31722195 pmcid: 6856723 doi: 10.1016/j.celrep.2019.10.035
Shin, C., Lim, Y., Lim, H. & Ahn, T. B. Plasma short-chain fatty acids in patients with Parkinson’s disease. Mov. Disord. 35, 1021–1027 (2020).
pubmed: 32154946 doi: 10.1002/mds.28016
Vascellari et al. Gut microbiota and metabolome alterations associated with Parkinson’s disease. mSystems 5, 5 e00561–20 (2020).
pubmed: 32934117 doi: 10.1128/mSystems.00561-20
Tan et al. Gut microbial ecosystem in Parkinson disease: new clinicobiological insights from multi-omics. Ann. Neurol. 89, 546–559 (2021).
pubmed: 33274480 doi: 10.1002/ana.25982
Yan et al. Alterations of gut microbiota and metabolome with Parkinson’s disease. Micro. Pathog. 160, 105187 (2021).
doi: 10.1016/j.micpath.2021.105187
Mertsalmi et al. More than constipation—bowel symptoms in Parkinson’s disease and their connection to gut microbiota. Eur. J. Neurol. 24, 1375–1383 (2017).
pubmed: 28891262 doi: 10.1111/ene.13398
Aho et al. Gut microbiota in Parkinson’s disease: temporal stability and relations to disease progression. EBioMedicine 44, 691–707 (2019).
pubmed: 31221587 pmcid: 6606744 doi: 10.1016/j.ebiom.2019.05.064
Pereira et al. Oral and nasal microbiota in Parkinson’s disease. Parkinsonism Relat. Disord. 38, 61–67 (2017).
pubmed: 28259623 doi: 10.1016/j.parkreldis.2017.02.026
Wishart et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46, D608–D617 (2018).
pubmed: 29140435 doi: 10.1093/nar/gkx1089
Sud et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 35(Database issue), D527–32 (2007).
pubmed: 17098933 doi: 10.1093/nar/gkl838
Sumner et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3, 211–221 (2007).
pubmed: 24039616 pmcid: 3772505 doi: 10.1007/s11306-007-0082-2
Sinclair et al. Metabolomics of sebum reveals lipid dysregulation in Parkinson’s disease. Nat. Commun. 12, 1592 (2021).
pubmed: 33707447 pmcid: 7952564 doi: 10.1038/s41467-021-21669-4
Alecu, I. & Bennett, S. A. L. Dysregulated lipid metabolism and its role in α-synucleinopathy in Parkinson’s disease. Front Neurosci. 13, 328 (2019).
pubmed: 31031582 pmcid: 6470291 doi: 10.3389/fnins.2019.00328
Lin, G., Wang, L., Marcogliese, P. C. & Bellen, H. J. Sphingolipids in the pathogenesis of Parkinson’s disease and Parkinsonism. Trends Endocrinol. Metab. 30, 106–117 (2019).
pubmed: 30528460 doi: 10.1016/j.tem.2018.11.003
Hallett, P. J., Engelender, S. & Isacson, O. Lipid and immune abnormalities causing age-dependent neurodegeneration and Parkinson’s disease. J. Neuroinflammation 16, 153 (2019).
pubmed: 31331333 pmcid: 6647317 doi: 10.1186/s12974-019-1532-2
Xicoy, H., Wieringa, B. & Martens, G. J. M. The role of lipids in Parkinson’s disease. Cells 8, 27 (2019).
pmcid: 6356353 doi: 10.3390/cells8010027
Alessenko, A. V. & Albi, E. Exploring sphingolipid implications in neurodegeneration. Front Neurol. 11, 437 (2020).
pubmed: 32528400 pmcid: 7254877 doi: 10.3389/fneur.2020.00437
Hu et al. Integrated metabolomics and proteomics analysis reveals plasma lipid metabolic disturbances in patients with Parkinson’s disease. Front Mol. Neurosci. 13, 80 (2020).
pubmed: 32714143 pmcid: 7344253 doi: 10.3389/fnmol.2020.00080
van Kruining et al. Sphingolipids as prognostic biomarkers of neurodegeneration, neuroinflammation, and psychiatric diseases and their emerging role in lipidomic investigation methods. Adv. Drug Deliv. Rev. 159, 232–244 (2020).
pubmed: 32360155 pmcid: 7665829 doi: 10.1016/j.addr.2020.04.009
Rodriguez-Cuenca, S., Pellegrinelli, V., Campbell, M., Oresic, M. & Vidal-Puig, A. Sphingolipids and glycerophospholipids—The “ying and yang” of lipotoxicity in metabolic diseases. Prog. Lipid Res. 66, 14–29 (2017).
pubmed: 28104532 doi: 10.1016/j.plipres.2017.01.002
Saiki et al. Decreased long-chain acylcarnitines from insufficient β-oxidation as potential early diagnostic markers for Parkinson’s disease. Sci. Rep. 7, 7328 (2017).
pubmed: 28779141 pmcid: 5544708 doi: 10.1038/s41598-017-06767-y
Rosario et al. Systematic analysis of gut microbiome reveals the role of bacterial folate and homocysteine metabolism in Parkinson’s disease. Cell Rep. 34, 108807 (2021).
pubmed: 33657381 doi: 10.1016/j.celrep.2021.108807
da Silva, R. P., Kelly, K. B., Al Rajabi, A. & Jacobs, R. L. Novel insights on interactions between folate and lipid metabolism. Biofactors 40, 277–83 (2014).
pubmed: 24353111 doi: 10.1002/biof.1154
Shao et al. Comprehensive metabolic profiling of Parkinson’s disease by liquid chromatography-mass spectrometry. Mol. Neurodegener. 16, 4 (2021).
pubmed: 33485385 pmcid: 7825156 doi: 10.1186/s13024-021-00425-8
Zhao et al. Potential biomarkers of Parkinson’s disease revealed by plasma metabolic profiling. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1081-1082, 101–108 (2018).
doi: 10.1016/j.jchromb.2018.01.025
Crooks et al. Carnitine levels and mutations in the SLC22A5 gene in Faroes patients with Parkinson’s disease. Neurosci. Lett. 675, 116–119 (2018).
pubmed: 29614331 doi: 10.1016/j.neulet.2018.03.064
Jiménez-Jiménez et al. Cerebrospinal fluid carnitine levels in patients with Parkinson’s disease. J. Neurol. Sci. 145, 183–5 (1997).
pubmed: 9094047 doi: 10.1016/S0022-510X(96)00259-6
Utami, O. C., Kurniawati, Y., Diba, S. & Saleh, M. I. Correlation between serum lipid profile and acne vulgaris severity. J. Phys.: Conf. Ser. 1246, 012066 (2019).
Camera E, Picardo M. Lipids in serum and sebum, Pathogenesis and Treatment of Acne and Rosacea (Springer, 2013)
Rattray et al. Metabolic dysregulation in vitamin E and carnitine shuttle energy mechanisms associate with human frailty. Nat. Commun. 10, 5027 (2019).
pubmed: 31690722 pmcid: 6831565 doi: 10.1038/s41467-019-12716-2
Fariss, M. W. & Zhang, J. G. Vitamin E therapy in Parkinson’s disease. Toxicology 189, 129–46 (2003).
pubmed: 12821288 doi: 10.1016/S0300-483X(03)00158-6
Etminan, M., Gill, S. S. & Samii, A. Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson’s disease: a meta-analysis. Lancet Neurol. 4, 362–5 (2005).
pubmed: 15907740 doi: 10.1016/S1474-4422(05)70097-1
Schirinzi et al. Dietary Vitamin E as a protective factor for Parkinson’s Disease: clinical and experimental evidence. Front Neurol. 10, 148 (2019).
pubmed: 30863359 pmcid: 6399121 doi: 10.3389/fneur.2019.00148
Nikam, S., Nikam, P., Ahaley, S. K. & Sontakke, A. V. Oxidative stress in Parkinson’s disease. Indian J. Clin. Biochem 24, 98–101 (2009).
pubmed: 23105815 pmcid: 3453463 doi: 10.1007/s12291-009-0017-y
Fernández-Irigoyen, J., Cartas-Cejudo, P., Iruarrizaga-Lejarreta, M. & Santamaría, E. Alteration in the cerebrospinal fluid lipidome in Parkinson’s disease: a post-mortem pilot study. Biomedicines 9, 491 (2021).
pubmed: 33946950 pmcid: 8146703 doi: 10.3390/biomedicines9050491
Fanning, S., Selkoe, D. & Dettmer, U. Parkinson’s disease: proteinopathy or lipidopathy? NPJ Parkinsons Dis. 6, 3 (2020).
pubmed: 31909184 pmcid: 6941970 doi: 10.1038/s41531-019-0103-7
Erskine et al. Lipids, lysosomes and mitochondria: insights into Lewy body formation from rare monogenic disorders. Acta Neuropathol. 141, 511–526 (2021).
pubmed: 33515275 pmcid: 7952289 doi: 10.1007/s00401-021-02266-7
Lin et al. Phospholipase PLA2G6, a Parkinsonism-associated gene, affects Vps26 and Vps35, retromer function, and ceramide levels, similar to α-synuclein gain. Cell Metab. 28, 605–618.e6 (2018).
pubmed: 29909971 doi: 10.1016/j.cmet.2018.05.019
Belarbi et al. Glycosphingolipids and neuroinflammation in Parkinson’s disease. Mol. Neurodegener. 15, 59 (2020).
pubmed: 33069254 pmcid: 7568394 doi: 10.1186/s13024-020-00408-1
Zhu, M., Li, J. & Fink, A. L. The association of alpha-synuclein with membranes affects bilayer structure, stability, and fibril formation. J. Biol. Chem. 278, 40186–97 (2003).
pubmed: 12885775 doi: 10.1074/jbc.M305326200
Madine, J., Doig, A. J. & Middleton, D. A. A study of the regional effects of alpha-synuclein on the organization and stability of phospholipid bilayers. Biochemistry 45, 5783–92 (2006).
pubmed: 16669622 doi: 10.1021/bi052151q
Rawat, A., Langen, R. & Varkey, J. Membranes as modulators of amyloid protein misfolding and target of toxicity. Biochim Biophys. Acta Biomembr. 1860, 1863–1875 (2018).
pubmed: 29702073 pmcid: 6203680 doi: 10.1016/j.bbamem.2018.04.011
Jo, E., McLaurin, J., Yip, C. M., St George-Hyslop, P. & Fraser, P. E. alpha-Synuclein membrane interactions and lipid specificity. J. Biol. Chem. 275, 34328–34 (2000).
pubmed: 10915790 doi: 10.1074/jbc.M004345200
Broersen, K., van den Brink, D., Fraser, G., Goedert, M. & Davletov, B. Alpha-synuclein adopts an alpha-helical conformation in the presence of polyunsaturated fatty acids to hinder micelle formation. Biochemistry 45, 15610–6 (2006).
pubmed: 17176082 doi: 10.1021/bi061743l
De Franceschi et al. Molecular insights into the interaction between alpha-synuclein and docosahexaenoic acid. J. Mol. Biol. 394, 94–107 (2009).
pubmed: 19747490 doi: 10.1016/j.jmb.2009.09.008
De Franceschi et al. Structural and morphological characterization of aggregated species of α-synuclein induced by docosahexaenoic acid. J. Biol. Chem. 286, 22262–74 (2011).
pubmed: 21527634 pmcid: 3121372 doi: 10.1074/jbc.M110.202937
Ludtmann et al. Monomeric alpha-synuclein exerts a physiological role on brain ATP synthase. J. Neurosci. 36, 10510–10521 (2016).
pubmed: 27733604 pmcid: 5059426 doi: 10.1523/JNEUROSCI.1659-16.2016
Henzi, V., Reichling, D. B., Helm, S. W. & MacDermott, A. B. L-proline activates glutamate and glycine receptors in cultured rat dorsal horn neurons. Mol. Pharm. 41, 793–801 (1992).
Wu et al. Proline metabolism in the conceptus: implications for fetal growth and development. Amino Acids 35, 691–702 (2008).
pubmed: 18330497 doi: 10.1007/s00726-008-0052-7
Ji, Y., Guo, Q., Yin, Y., Blachier, F. & Kong, X. Dietary proline supplementation alters colonic luminal microbiota and bacterial metabolite composition between days 45 and 70 of pregnancy in Huanjiang mini-pigs. J. Anim. Sci. Biotechnol. 9, 18 (2018).
pubmed: 29423216 pmcid: 5789534 doi: 10.1186/s40104-018-0233-5
Dunn et al. Human serum metabolome (HUSERMET) consortium. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060–83 (2011).
pubmed: 21720319 doi: 10.1038/nprot.2011.335
Begley et al. HUSERMET Consortium, Goodacre R, Kell DB. Development and performance of a gas chromatography-time-of-flight mass spectrometry analysis for large-scale nontargeted metabolomic studies of human serum. Anal. Chem. 81, 7038–46 (2009).
pubmed: 19606840 doi: 10.1021/ac9011599
Chambers et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–20 (2012).
pubmed: 23051804 pmcid: 3471674 doi: 10.1038/nbt.2377
RStudio Team. RStudio: Integrated Development Environment for R. Boston, MA. Available from: http://www.rstudio.com/ (2015).
Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–87 (2006).
pubmed: 16448051 doi: 10.1021/ac051437y
Domingo-Almenara et al. eRah: a computational tool integrating spectral deconvolution and alignment with quantification and identification of metabolites in GC/MS-based metabolomics. Anal. Chem. 88, 9821–9829 (2016).
pubmed: 27584001 doi: 10.1021/acs.analchem.6b02927
Duan, K. B., Rajapakse, J. C., Wang, H. & Azuaje, F. Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE Trans. Nanobioscience 4, 228–34 (2005).
pubmed: 16220686 doi: 10.1109/TNB.2005.853657
Kurlowicz, L. & Greenberg, S. A. The geriatric depression scale (GDS). Am. J. Nurs. 107, 67–68 (2007).
doi: 10.1097/01.NAJ.0000292207.37066.2f
Ombaugh, T. N., McDowell, I., Kristjansson, B. & Hubley, A. M. Mini-mental state examination (MMSE) and the modified MMSE (3MS): a psychometric comparison and normative data. Psychological Assess. 8, 48–59 (1996).
doi: 10.1037/1040-3590.8.1.48
Chaudhuri, K. R. & Martinez-Martin, P. Quantitation of non-motor symptoms in Parkinson’s disease. Eur. J. Neurol. 15(Suppl 2), 2–7 (2008).
pubmed: 18702736 doi: 10.1111/j.1468-1331.2008.02212.x
Stiasny-Kolster et al. The REM sleep behavior disorder screening questionnaire-a new diagnostic instrument. Mov. Disord. 22, 2386–93 (2007).
pubmed: 17894337 doi: 10.1002/mds.21740
Rome Foundation. Guidelines-Rome III diagnostic criteria for functional gastrointestinal disorders. J. Gastrointestin Liver Dis. 15, 307–12 (2006).
Agachan, F., Chen, T., Pfeifer, J., Reissman, P. & Wexner, S. D. A constipation scoring system to simplify evaluation and management of constipated patients. Dis. Colon Rectum 39, 681–5 (1996).
pubmed: 8646957 doi: 10.1007/BF02056950
Lloret et al. Validation of a new scale for the evaluation of sialorrhea in patients with Parkinson’s disease. Mov. Disord. 22, 107–11 (2007).
doi: 10.1002/mds.21152
Lam et al. Simple clinical tests may predict severe oropharyngeal dysphagia in Parkinson’s disease. Mov. Disord. 22, 640–4 (2007).
pubmed: 17266075 doi: 10.1002/mds.21362
Li et al. Predicting network activity from high throughput metabolomics. PLoS Comput. Biol. 9, e1003123 (2013).
pubmed: 23861661 pmcid: 3701697 doi: 10.1371/journal.pcbi.1003123
Chong, J. & Xia, J. MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 34, 4313–4314 (2018).
pubmed: 29955821 pmcid: 6289126 doi: 10.1093/bioinformatics/bty528
Silverman, J. D., Roche, K., Holmes, Z. C., David, L. A. & Mukherjee, S. Bayesian Multinomial Logistic Normal Models through Marginally Latent Matrix-T Processes. J. Mach. Learn. Res. 23, 1–42 (2022).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).
Aitchison, J. The Statistical Analysis of Compositional Data. (Monographs on statistics and applied probability, Chapman and Hall, London, New York, 1986).
doi: 10.1007/978-94-009-4109-0
Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).
pubmed: 23028285 pmcid: 3447976 doi: 10.1371/journal.pcbi.1002687
Shannon et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–504 (2003).
pubmed: 14597658 pmcid: 403769 doi: 10.1101/gr.1239303
Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
pubmed: 10592173 pmcid: 102409 doi: 10.1093/nar/28.1.27

Auteurs

Pedro A B Pereira (PAB)

Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Haartmaninkatu 4, 00290, Helsinki, Finland. pedro.pereira@helsinki.fi.
Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Viikinkaari 5D, 00014, Helsinki, Finland. pedro.pereira@helsinki.fi.

Drupad K Trivedi (DK)

Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.

Justin Silverman (J)

College of Information Science and Technology, Department of Statistics, and Institute for Computational and Data Science, Penn State University, University Park, PA, USA.
Department of Medicine, Penn State University, Hershey, PA, USA.

Ilhan Cem Duru (IC)

Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Viikinkaari 5D, 00014, Helsinki, Finland.

Lars Paulin (L)

Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Viikinkaari 5D, 00014, Helsinki, Finland.

Petri Auvinen (P)

Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Viikinkaari 5D, 00014, Helsinki, Finland.

Filip Scheperjans (F)

Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Haartmaninkatu 4, 00290, Helsinki, Finland. filip.scheperjans@hus.fi.

Classifications MeSH