External chest-wall compression in prolonged COVID-19 ARDS with low-compliance: a physiological study.
ARDS
COVID-19
Chest-wall compression
Driving pressure
Gas exchange
Mechanical ventilation
Respiratory mechanics
Ventilator-induced lung injury
Journal
Annals of intensive care
ISSN: 2110-5820
Titre abrégé: Ann Intensive Care
Pays: Germany
ID NLM: 101562873
Informations de publication
Date de publication:
12 Apr 2022
12 Apr 2022
Historique:
received:
16
11
2021
accepted:
23
03
2022
entrez:
12
4
2022
pubmed:
13
4
2022
medline:
13
4
2022
Statut:
epublish
Résumé
External chest-wall compression (ECC) is sometimes used in ARDS patients despite lack of evidence. It is currently unknown whether this practice has any clinical benefit in patients with COVID-19 ARDS (C-ARDS) characterized by a respiratory system compliance (C To test if an ECC with a 5 L-bag in low-compliance C-ARDS can lead to a reduction in driving pressure (DP) and improve gas exchange, and to understand the underlying mechanisms. Eleven patients with low-compliance C-ARDS were enrolled and underwent 4 steps: baseline, ECC for 60 min, ECC discontinuation and PEEP reduction. Respiratory mechanics, gas exchange, hemodynamics and electrical impedance tomography were recorded. Four pigs with acute ARDS were studied with ECC to understand the effect of ECC on pleural pressure gradient using pleural pressure transducers in both non-dependent and dependent lung regions. Five minutes of ECC reduced DP from baseline 14.2 ± 1.3 to 12.3 ± 1.3 cmH In C-ARDS patients with C
Sections du résumé
BACKGROUND
BACKGROUND
External chest-wall compression (ECC) is sometimes used in ARDS patients despite lack of evidence. It is currently unknown whether this practice has any clinical benefit in patients with COVID-19 ARDS (C-ARDS) characterized by a respiratory system compliance (C
OBJECTIVES
OBJECTIVE
To test if an ECC with a 5 L-bag in low-compliance C-ARDS can lead to a reduction in driving pressure (DP) and improve gas exchange, and to understand the underlying mechanisms.
METHODS
METHODS
Eleven patients with low-compliance C-ARDS were enrolled and underwent 4 steps: baseline, ECC for 60 min, ECC discontinuation and PEEP reduction. Respiratory mechanics, gas exchange, hemodynamics and electrical impedance tomography were recorded. Four pigs with acute ARDS were studied with ECC to understand the effect of ECC on pleural pressure gradient using pleural pressure transducers in both non-dependent and dependent lung regions.
RESULTS
RESULTS
Five minutes of ECC reduced DP from baseline 14.2 ± 1.3 to 12.3 ± 1.3 cmH
CONCLUSIONS
CONCLUSIONS
In C-ARDS patients with C
Identifiants
pubmed: 35412161
doi: 10.1186/s13613-022-01008-6
pii: 10.1186/s13613-022-01008-6
pmc: PMC9003155
doi:
Types de publication
Journal Article
Langues
eng
Pagination
35Subventions
Organisme : CIHR
ID : PJT156336
Pays : Canada
Organisme : CIHR
ID : PJT152898
Pays : Canada
Informations de copyright
© 2022. The Author(s).
Références
Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy [published correction appears in JAMA. 2021 May 25;325(20):2120]. JAMA. 2020;323(16):1574–81. https://doi.org/10.1001/jama.2020.5394 .
doi: 10.1001/jama.2020.5394
pubmed: 32250385
pmcid: 7136855
Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020;395(10239):1763–70. https://doi.org/10.1016/S0140-6736(20)31189-2 .
doi: 10.1016/S0140-6736(20)31189-2
pubmed: 32442528
pmcid: 7237188
Ziehr DR, Alladina J, Petri CR, et al. Respiratory pathophysiology of mechanically ventilated patients with COVID-19: a cohort study. Am J Respir Crit Care Med. 2020;201(12):1560–4. https://doi.org/10.1164/rccm.202004-1163LE .
doi: 10.1164/rccm.202004-1163LE
pubmed: 32348678
pmcid: 7301734
Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–55. https://doi.org/10.1056/NEJMsa1410639 .
doi: 10.1056/NEJMsa1410639
pubmed: 25693014
Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68. https://doi.org/10.1056/NEJMoa1214103 .
doi: 10.1056/NEJMoa1214103
pubmed: 23688302
Network ARDS. Ventilation with lower tidal volumes as compared with traditional tidal volumes for ALI and the ARDS. N Engl J Med. 2000;342:1301–8. https://doi.org/10.1056/NEJM200005043421801 .
doi: 10.1056/NEJM200005043421801
Langer T, Brioni M, Guzzardella A, et al. Prone position in intubated, mechanically ventilated patients with COVID-19: a multi-centric study of more than 1000 patients. Crit Care. 2021;25(1):128. https://doi.org/10.1186/s13054-021-03552-2 .
doi: 10.1186/s13054-021-03552-2
pubmed: 33823862
pmcid: 8022297
Vandenbunder B, Ehrmann S, Piagnerelli M, et al. Static compliance of the respiratory system in COVID-19 related ARDS: an international multicenter study. Crit Care. 2021;25(1):52. https://doi.org/10.1186/s13054-020-03433-0 .
doi: 10.1186/s13054-020-03433-0
pubmed: 33557868
pmcid: 7868865
Rossi S, Palumbo MM, Sverzellati N, et al. Mechanisms of oxygenation responses to proning and recruitment in COVID-19 pneumonia. Intensive Care Med. 2022;48(1):56–66. https://doi.org/10.1007/s00134-021-06562-4 .
doi: 10.1007/s00134-021-06562-4
pubmed: 34825929
Bottino N, Panigada M, Chiumello D, Pelosi P, Gattinoni L. Effects of artificial changes in chest wall compliance on respiratory mechanics and gas exchange in patients with acute lung injury (ALI). Crit Care. 2000;4(Suppl 1):P117. https://doi.org/10.1186/cc837 .
doi: 10.1186/cc837
pmcid: 3333041
Samanta S, Samanta S, Soni KD. Supine chest compression: alternative to prone ventilation in acute respiratory distress syndrome. Am J Emerg Med. 2014;32(5):489. https://doi.org/10.1016/j.ajem.2013.11.014 .
doi: 10.1016/j.ajem.2013.11.014
pubmed: 24332252
Carteaux G, Tuffet S, Mekontso DA. Potential protective effects of continuous anterior chest compression in the acute respiratory distress syndrome: physiology of an illustrative case. Crit Care. 2021;25(1):187. https://doi.org/10.1186/s13054-021-03619-0 .
doi: 10.1186/s13054-021-03619-0
pubmed: 34074334
pmcid: 8169405
Rezoagli E, Bastia L, Grassi A, et al. Paradoxical effect of chest wall compression on respiratory system compliance: a multicenter case series of patients with ARDS with multimodal assessment. Chest. 2021;160(4):1335–9. https://doi.org/10.1016/j.chest.2021.05.057 .
doi: 10.1016/j.chest.2021.05.057
pubmed: 34118247
Kummer RL, Shapiro RS, Marini JJ, Huelster JS, Leatherman JW. Paradoxically improved respiratory compliance with abdominal compression in COVID-19 ARDS. Chest. 2021. https://doi.org/10.1016/j.chest.2021.05.012 .
doi: 10.1016/j.chest.2021.05.012
pubmed: 34023319
ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–33. https://doi.org/10.1001/jama.2012.5669 .
doi: 10.1001/jama.2012.5669
Marrazzo F, Spina S, Forlini C, et al. Effects of trunk inclination on respiratory mechanics in patients with COVID-19 associated ARD. Am J Respir Crit Care Med. 2022. https://doi.org/10.1164/rccm.202110-2360LE .
doi: 10.1164/rccm.202110-2360LE
pubmed: 34982652
pmcid: 8906482
Baydur A, Behrakis PK, Zin WA, Jaeger M, Milic-Emili J. A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis. 1982;126(5):788–91. https://doi.org/10.1164/arrd.1982.126.5.788 .
doi: 10.1164/arrd.1982.126.5.788
pubmed: 7149443
Bastia L, Engelberts D, Osada K, et al. Role of positive end-expiratory pressure and regional transpulmonary pressure in asymmetrical lung injury. Am J Respir Crit Care Med. 2021;203(8):969–76. https://doi.org/10.1164/rccm.202005-1556OC .
doi: 10.1164/rccm.202005-1556OC
pubmed: 33091317
Katira BH, Osada K, Engelberts D, et al. Positive end-expiratory pressure, pleural pressure, and regional compliance during pronation: an experimental study. Am J Respir Crit Care Med. 2021;203(10):1266–74. https://doi.org/10.1164/rccm.202007-2957OC .
doi: 10.1164/rccm.202007-2957OC
pubmed: 33406012
Hinz J, Hahn G, Neumann P, et al. End-expiratory lung impedance change enables bedside monitoring of end-expiratory lung volume change. Intensive Care Med. 2003;29(1):37–43. https://doi.org/10.1007/s00134-002-1555-4 .
doi: 10.1007/s00134-002-1555-4
pubmed: 12528020
Bronco A, Grassi A, Meroni V, et al. Clinical value of electrical impedance tomography (EIT) in the management of patients with acute respiratory failure: a single centre experience. Physiol Meas. 2021;42(7):074003. https://doi.org/10.1088/1361-6579/ac0e85 .
doi: 10.1088/1361-6579/ac0e85
Mojoli F, Chiumello D, Pozzi M, et al. Esophageal pressure measurements under different conditions of intrathoracic pressure. An in vitro study of second generation balloon catheters. Minerva Anestesiol. 2015;81(8):855–64.
pubmed: 25634481
Sinha P, Calfee CS, Beitler JR, et al. Physiologic analysis and clinical performance of the ventilatory ratio in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2019;199(3):333–41. https://doi.org/10.1164/rccm.201804-0692OC .
doi: 10.1164/rccm.201804-0692OC
pubmed: 30211618
pmcid: 6363976
Frerichs I, Pulletz S, Elke G, Gawelczyk B, Frerichs A, Weiler N. Patient examinations using electrical impedance tomography—sources of interference in the intensive care unit. Physiol Meas. 2011;32(12):L1–10. https://doi.org/10.1088/0967-3334/32/12/F01 .
doi: 10.1088/0967-3334/32/12/F01
pubmed: 22031540
Coudroy R, Vimpere D, Aissaoui N, et al. Prevalence of complete airway closure according to body mass index in acute respiratory distress syndrome. Anesthesiology. 2020;133(4):867–78. https://doi.org/10.1097/ALN.0000000000003444 .
doi: 10.1097/ALN.0000000000003444
pubmed: 32701573
Fisher MM, Bowey CJ, Ladd-Hudson K. External chest compression in acute asthma: a preliminary study. Crit Care Med. 1989;17(7):686–7. https://doi.org/10.1097/00003246-198907000-00018 .
doi: 10.1097/00003246-198907000-00018
pubmed: 2736932
Watts JI. Thoracic compression for asthma. Chest. 1984;86(3):505. https://doi.org/10.1378/chest.86.3.505b .
doi: 10.1378/chest.86.3.505b
pubmed: 6468018
Marini JJ, Gattinoni L. Improving lung compliance by external compression of the chest wall. Crit Care. 2021;25(1):264. https://doi.org/10.1186/s13054-021-03700-8 .
doi: 10.1186/s13054-021-03700-8
pubmed: 34321060
pmcid: 8318320
Sarge T, Baedorf-Kassis E, Banner-Goodspeed V, et al. Effect of esophageal pressure-guided positive end-expiratory pressure on survival from acute respiratory distress syndrome: a risk-based and mechanistic reanalysis of the EPVent-2 Trial. Am J Respir Crit Care Med. 2021;204(10):1153–63. https://doi.org/10.1164/rccm.202009-3539OC .
doi: 10.1164/rccm.202009-3539OC
pubmed: 34464237
Pelosi P, Goldner M, McKibben A, et al. Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med. 2001;164(1):122–30. https://doi.org/10.1164/ajrccm.164.1.2007010 .
doi: 10.1164/ajrccm.164.1.2007010
pubmed: 11435250
Bryan AC. Conference on the scientific basis of respiratory therapy. Pulmonary physiotherapy in the pediatric age group. Comments of a devil’s advocate. Am Rev Respir Dis. 1974;110(6 Pt 2):143–4. https://doi.org/10.1164/arrd.1974.110.6P2.143 .
doi: 10.1164/arrd.1974.110.6P2.143
pubmed: 4440945
Munshi L, Del Sorbo L, Adhikari NKJ, Hodgson CL, Wunsch H, Meade MO, et al. Prone position for acute respiratory distress syndrome: a systematic review and meta-analysis. Ann Am Thorac Soc. 2017;14(Suppl_4):S280–8. https://doi.org/10.1513/AnnalsATS.201704-343OT .
doi: 10.1513/AnnalsATS.201704-343OT
pubmed: 29068269