Transcriptomic analysis in zebrafish larvae identifies iron-dependent mitochondrial dysfunction as a possible key event of NAFLD progression induced by benzo[a]pyrene/ethanol co-exposure.


Journal

Cell biology and toxicology
ISSN: 1573-6822
Titre abrégé: Cell Biol Toxicol
Pays: Switzerland
ID NLM: 8506639

Informations de publication

Date de publication:
04 2023
Historique:
received: 31 08 2021
accepted: 28 02 2022
medline: 9 6 2023
pubmed: 13 4 2022
entrez: 12 4 2022
Statut: ppublish

Résumé

Non-alcoholic fatty liver disease (NAFLD) is a worldwide epidemic for which environmental contaminants are increasingly recognized as important etiological factors. Among them, the combination of benzo[a]pyrene (B[a]P), a potent environmental carcinogen, with ethanol, was shown to induce the transition of steatosis toward steatohepatitis. However, the underlying mechanisms involved remain to be deciphered. In this context, we used high-fat diet fed zebrafish model, in which we previously observed progression of steatosis to a steatohepatitis-like state following a 7-day-co-exposure to 43 mM ethanol and 25 nM B[a]P. Transcriptomic analysis highlighted the potent role of mitochondrial dysfunction, alterations in heme and iron homeostasis, involvement of aryl hydrocarbon receptor (AhR) signaling, and oxidative stress. Most of these mRNA dysregulations were validated by RT-qPCR. Moreover, similar changes were observed using a human in vitro hepatocyte model, HepaRG cells. The mitochondria structural and functional alterations were confirmed by transmission electronic microscopy and Seahorse technology, respectively. Involvement of AhR signaling was evidenced by using in vivo an AhR antagonist, CH223191, and in vitro in AhR-knock-out HepaRG cells. Furthermore, as co-exposure was found to increase the levels of both heme and hemin, we investigated if mitochondrial iron could induce oxidative stress. We found that mitochondrial labile iron content was raised in toxicant-exposed larvae. This increase was prevented by the iron chelator, deferoxamine, which also inhibited liver co-exposure toxicity. Overall, these results suggest that the increase in mitochondrial iron content induced by B[a]P/ethanol co-exposure causes mitochondrial dysfunction that contributes to the pathological progression of NAFLD.

Identifiants

pubmed: 35412187
doi: 10.1007/s10565-022-09706-4
pii: 10.1007/s10565-022-09706-4
doi:

Substances chimiques

Ethanol 3K9958V90M
Benzo(a)pyrene 3417WMA06D
Heme 42VZT0U6YR

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

371-390

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Batiha GE-S, Beshbishy AM, Ikram M, Mulla ZS, El-Hack MEA, Taha AE, et al. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods. 2020;9(3):374.
pubmed: 32210182 pmcid: 7143931 doi: 10.3390/foods9030374
Begriche K, Massart J, Robin M-A, Bonnet F, Fromenty B. Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatol Baltim Md. 2013;58(4):1497–507.
doi: 10.1002/hep.26226
Begriche K, Massart J, Fromenty B. Chapter 15 - Mitochondrial dysfunction induced by xenobiotics: involvement in steatosis and steatohepatitis. In: Morio B, Pénicaud L, Rigoulet M, editors. Mitochondria in obesity and type 2 diabetes. Academic Press; 2019. pp. 347–64. https://doi.org/10.1016/B978-0-12-811752-1.00015-8 .
Britton LJ, Subramaniam VN, Crawford DH. Iron and non-alcoholic fatty liver disease. World J Gastroenterol. 2016;22(36):8112–22.
pubmed: 27688653 pmcid: 5037080 doi: 10.3748/wjg.v22.i36.8112
Bucher S, Le Guillou D, Allard J, Pinon G, Begriche K, Tête A, et al. Possible involvement of mitochondrial dysfunction and oxidative stress in a cellular model of NAFLD progression induced by benzo[a]pyrene/ethanol coexposure. Oxid Med Cell Longev. 2018a;2018:4396403.
Bucher S, Tête A, Podechard N, Liamin M, Le Guillou D, Chevanne M, et al. Co-exposure to benzo[a]pyrene and ethanol induces a pathological progression of liver steatosis in vitro and in vivo. Sci Rep. 2018b;8(1):5963.
Burton GW, Ingold KU. Vitamin E as an in vitro and in vivo antioxidant. Ann N Y Acad Sci. 1989;570(1 Vitamin E):7–22.
pubmed: 2698111 doi: 10.1111/j.1749-6632.1989.tb14904.x
Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell Mol Life Sci CMLS. 2016;73(11–12):2195–209.
pubmed: 27048822 doi: 10.1007/s00018-016-2194-1
Cella M, Colonna M. Aryl hydrocarbon receptor: linking environment to immunity. Semin Immunol. 2015;27(5):310–4.
pubmed: 26561251 pmcid: 4681659 doi: 10.1016/j.smim.2015.10.002
Chu J, Sadler KC. New school in liver development: lessons from zebrafish. Hepatol Baltim Md. 2009;50(5):1656–63.
doi: 10.1002/hep.23157
Collin A, Hardonnière K, Chevanne M, Vuillemin J, Podechard N, Burel A, et al. Cooperative interaction of benzo[a]pyrene and ethanol on plasma membrane remodeling is responsible for enhanced oxidative stress and cell death in primary rat hepatocytes. Free Radic Biol Med. 2014;72:11–22.
pubmed: 24681337 doi: 10.1016/j.freeradbiomed.2014.03.029
Corradini E, Pietrangelo A. Iron and steatohepatitis. J Gastroenterol Hepatol. 2012;27(Suppl 2):42–6.
pubmed: 22320915 doi: 10.1111/j.1440-1746.2011.07014.x
Das DN, Bhutia SK. Inevitable dietary exposure of benzo[a]pyrene: carcinogenic risk assessment an emerging issues and concerns. Curr Opin Food Sci. 2018;24:16–25.
doi: 10.1016/j.cofs.2018.10.008
Donegan RK, Moore CM, Hanna DA, Reddi AR. Handling heme: the mechanisms underlying the movement of heme within and between cells. Free Radic Biol Med. 2019;133:88–100.
pubmed: 30092350 doi: 10.1016/j.freeradbiomed.2018.08.005
Driessen M, Kienhuis AS, Pennings JLA, Pronk TE, van de Brandhof E-J, Roodbergen M, et al. Exploring the zebrafish embryo as an alternative model for the evaluation of liver toxicity by histopathology and expression profiling. Arch Toxicol. 2013;87(5):807–23.
pubmed: 23559145 doi: 10.1007/s00204-013-1039-z
Driessen M, Kienhuis AS, Vitins AP, Pennings JLA, Pronk TE, van den Brandhof E-J, et al. Gene expression markers in the zebrafish embryo reflect a hepatotoxic response in animal models and humans. Toxicol Lett. 2014;230(1):48–56.
pubmed: 25064622 doi: 10.1016/j.toxlet.2014.06.844
Fader KA, Zacharewski TR. Beyond the aryl hydrocarbon receptor: pathway interactions in the hepatotoxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds. Curr Opin Toxicol. 2017;2:36–41.
pubmed: 28948239 pmcid: 5609723 doi: 10.1016/j.cotox.2017.01.010
Fader KA, Nault R, Kirby MP, Markous G, Matthews J, Zacharewski TR. Convergence of hepcidin deficiency, systemic iron overloading, heme accumulation, and REV-ERBα/β activation in aryl hydrocarbon receptor-elicited hepatotoxicity. Toxicol Appl Pharmacol. 2017;321:1–17.
pubmed: 28213091 pmcid: 5421516 doi: 10.1016/j.taap.2017.02.006
Fazel Y, Koenig AB, Sayiner M, Goodman ZD, Younossi ZM. Epidemiology and natural history of non-alcoholic fatty liver disease. Metabolism. 2016;65(8):1017–25.
pubmed: 26997539 doi: 10.1016/j.metabol.2016.01.012
Goessling W, Sadler KC. Zebrafish: an important tool for liver disease research. Gastroenterology. 2015;149(6):1361–77.
pubmed: 26319012 doi: 10.1053/j.gastro.2015.08.034
Goldstone JV, McArthur AG, Kubota A, Zanette J, Parente T, Jönsson ME, et al. Identification and developmental expression of the full complement of cytochrome P450 genes in zebrafish. BMC Genomics. 2010;11:643.
pubmed: 21087487 pmcid: 3012610 doi: 10.1186/1471-2164-11-643
Goodale BC, La Du JK, Bisson WH, Janszen DB, Waters KM, Tanguay RL. AHR2 mutant reveals functional diversity of aryl hydrocarbon receptors in zebrafish. PloS One. 2012;7(1):e29346.
pubmed: 22242167 pmcid: 3252317 doi: 10.1371/journal.pone.0029346
Gorria M, Huc L, Sergent O, Rebillard A, Gaboriau F, Dimanche-Boitrel M-T, et al. Protective effect of monosialoganglioside GM1 against chemically induced apoptosis through targeting of mitochondrial function and iron transport. Biochem Pharmacol. 2006a;72(10):1343–53.
Gorria M, Tekpli X, Sergent O, Huc L, Gaboriau F, Rissel M, et al. Membrane fluidity changes are associated with benzo[a]pyrene-induced apoptosis in F258 cells: protection by exogenous cholesterol. Ann N Y Acad Sci. 2006b;1090:108–12.
Grattagliano I, Montezinho LP, Oliveira PJ, Frühbeck G, Gómez-Ambrosi J, Montecucco F, et al. Targeting mitochondria to oppose the progression of nonalcoholic fatty liver disease. Biochem Pharmacol. 2019;160:34–45.
pubmed: 30508523 doi: 10.1016/j.bcp.2018.11.020
Hardonnière K, Saunier E, Lemarié A, Fernier M, Gallais I, Héliès-Toussaint C, et al. The environmental carcinogen benzo[a]pyrene induces a Warburg-like metabolic reprogramming dependent on NHE1 and associated with cell survival. Sci Rep. 2016;04(6):30776.
doi: 10.1038/srep30776
Hardonnière K, Fernier M, Gallais I, Mograbi B, Podechard N, Le Ferrec E, et al. Role for the ATPase inhibitory factor 1 in the environmental carcinogen-induced Warburg phenotype. Sci Rep. 2017;7(1):195.
pubmed: 28298645 pmcid: 5428028 doi: 10.1038/s41598-017-00269-7
Hwang HJ, Dornbos P, Steidemann M, Dunivin TK, Rizzo M, LaPres JJ. Mitochondrial-targeted aryl hydrocarbon receptor and the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cellular respiration and the mitochondrial proteome. Toxicol Appl Pharmacol. 2016;01(304):121–32.
doi: 10.1016/j.taap.2016.04.005
Imran M, Sergent O, Tête A, Gallais I, Chevanne M, Lagadic-Gossmann D, et al. Membrane remodeling as a key player of the hepatotoxicity induced by co-exposure to benzo[a]pyrene and ethanol of obese zebrafish larvae. Biomolecules. 2018;8(2):26. https://doi.org/10.3390/biom8020026 .
doi: 10.3390/biom8020026 pubmed: 29757947 pmcid: 6023014
International Agency for Research on Cancer (IARC). Chemical agents and related occupations. Published by the International Agency for Research on Cancer. Geneva: WHO Press, World Health Organization; 2012.
Ishihara N, Mihara K. PARL paves the way to apoptosis. Nat Cell Biol. 2017;19(4):263–5.
pubmed: 28361942 doi: 10.1038/ncb3504
Joshi-Barve S, Kirpich I, Cave MC, Marsano LS, McClain CJ. Alcoholic, nonalcoholic, and toxicant-associated steatohepatitis: mechanistic similarities and differences. Cell Mol Gastroenterol Hepatol. 2015;1(4):356–67.
pubmed: 28210688 pmcid: 5301292 doi: 10.1016/j.jcmgh.2015.05.006
Kumar S, Bandyopadhyay U. Free heme toxicity and its detoxification systems in human. Toxicol Lett. 2005;157(3):175–88.
pubmed: 15917143 doi: 10.1016/j.toxlet.2005.03.004
Li Z, Li Y, Zhang H-X, Guo J-R, Lam CWK, Wang C-Y, et al. Mitochondria-mediated pathogenesis and therapeutics for non-alcoholic fatty liver disease. Mol Nutr Food Res. 2019;14:e1900043.
doi: 10.1002/mnfr.201900043
Liamin M, Le Mentec H, Evrard B, Huc L, Chalmel F, Boutet-Robinet E, et al. Genome-wide transcriptional and functional analysis of human T lymphocytes treated with benzo[α]pyrene. Int J Mol Sci. 2018;19(11):3626. https://doi.org/10.3390/ijms19113626 .
doi: 10.3390/ijms19113626 pubmed: 30453624 pmcid: 6274903
Luan Y, Zhang F, Cheng Y, Liu J, Huang R, Yan M, et al. Hemin improves insulin sensitivity and lipid metabolism in cultured hepatocytes and mice fed a high-fat diet. Nutrients. 2017;9(8):805.
pubmed: 28933767 pmcid: 5579599 doi: 10.3390/nu9080805
Lv H, Shang P. The significance, trafficking and determination of labile iron in cytosol, mitochondria and lysosomes. Met Integr Biometal Sci. 2018;10(7):899–916.
doi: 10.1039/C8MT00048D
Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol J Hematol Oncol. 2019;12(1):34.
pubmed: 30925886 doi: 10.1186/s13045-019-0720-y
Qi J, Kim J-W, Zhou Z, Lim C-W, Kim B. Ferroptosis affects the progression of nonalcoholic steatohepatitis via the modulation of lipid peroxidation-mediated cell death in mice. Am J Pathol. 2020;190(1):68–81.
pubmed: 31610178 doi: 10.1016/j.ajpath.2019.09.011
Raftery TD, Jayasundara N, Di Giulio RT. A bioenergetics assay for studying the effects of environmental stressors on mitochondrial function in vivo in zebrafish larvae. Comp Biochem Physiol Part C Toxicol Pharmacol. 2017;192:23–32.
doi: 10.1016/j.cbpc.2016.12.001
Schlegel A. Studying non-alcoholic fatty liver disease with zebrafish: a confluence of optics, genetics, and physiology. Cell Mol Life Sci. 2012;69(23):3953–61. https://doi.org/10.1007/s00018-012-1037-y .
doi: 10.1007/s00018-012-1037-y pubmed: 22678663 pmcid: 3492697
Severson TJ, Besur S, Bonkovsky HL. Genetic factors that affect nonalcoholic fatty liver disease: a systematic clinical review. World J Gastroenterol. 2016;22(29):6742.
pubmed: 27547017 pmcid: 4970479 doi: 10.3748/wjg.v22.i29.6742
Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K, et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc. 2014;136(12):4551–6.
pubmed: 24592866 pmcid: 3985476 doi: 10.1021/ja411006a
Smith AG, Carthew P, Clothier B, Constantin D, Francis JE, Madra S. Synergy of iron in the toxicity and carcinogenicity of polychlorinated biphenyls (PCBs) and related chemicals. Toxicol Lett. 1995;82–83:945–50.
pubmed: 8597166 doi: 10.1016/0378-4274(95)03530-3
Szabo G, Saha B. Alcohol’s effect on host defense. Alcohol Res Curr Rev. 2015;37(2):159–70.
Szigeti A, Bellyei S, Gasz B, Boronkai A, Hocsak E, Minik O, et al. Induction of necrotic cell death and mitochondrial permeabilization by heme binding protein 2/SOUL. FEBS Lett. 2006;580(27):6447–54.
pubmed: 17098234 doi: 10.1016/j.febslet.2006.10.067
Tappenden DM, Lynn SG, Crawford RB, Lee K, Vengellur A, Kaminski NE, et al. The aryl hydrocarbon receptor interacts with ATP5α1, a subunit of the ATP synthase complex, and modulates mitochondrial function. Toxicol Appl Pharmacol. 2011;254(3):299–310.
pubmed: 21616089 pmcid: 3133825 doi: 10.1016/j.taap.2011.05.004
Tekpli X, Rissel M, Huc L, Catheline D, Sergent O, Rioux V, et al. Membrane remodeling, an early event in benzo[a]pyrene-induced apoptosis. Toxicol Appl Pharmacol. 2010;243(1):68–76.
pubmed: 19931295 doi: 10.1016/j.taap.2009.11.014
Tête A, Gallais I, Imran M, Chevanne M, Liamin M, Sparfel L, et al. Mechanisms involved in the death of steatotic WIF-B9 hepatocytes co-exposed to benzo[a]pyrene and ethanol: a possible key role for xenobiotic metabolism and nitric oxide. Free Radic Biol Med. 2018;129:323–37.
pubmed: 30268890 doi: 10.1016/j.freeradbiomed.2018.09.042
Tsurusaki S, Tsuchiya Y, Koumura T, Nakasone M, Sakamoto T, Matsuoka M, et al. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis. Cell Death Dis. 2019;10(6):449.
pubmed: 31209199 pmcid: 6579767 doi: 10.1038/s41419-019-1678-y
Uno S, Nebert DW, Makishima M. Cytochrome P450 1A1 (CYP1A1) protects against nonalcoholic fatty liver disease caused by Western diet containing benzo[a]pyrene in mice. Food Chem. Toxicol Int J Publ Br Ind Biol Res Assoc. 2018;113:73–82.
Wahlang B, Beier JI, Clair HB, Bellis-Jones HJ, Falkner KC, McClain CJ, et al. Toxicant-associated steatohepatitis. Toxicol Pathol. 2013;41(2):343–60.
pubmed: 23262638 doi: 10.1177/0192623312468517
Wahlang B, Jin J, Beier JI, Hardesty JE, Daly EF, Schnegelberger RD, et al. Mechanisms of environmental contributions to fatty liver disease. Curr Environ Health Rep. 2019;6(3):80–94.
pubmed: 31134516 pmcid: 6698418 doi: 10.1007/s40572-019-00232-w
Wang K-J, Bo J, Yang M, Hong H-S, Wang X-H, Chen F-Y, et al. Hepcidin gene expression induced in the developmental stages of fish upon exposure to Benzo[a]pyrene (BaP). Mar Environ Res. 2009;67(3):159–65.
pubmed: 19185344 doi: 10.1016/j.marenvres.2008.12.008
Wang E, Liu X, Tu W, Do DC, Yu H, Yang L, et al. Benzo(a)pyrene facilitates dermatophagoides group 1 (Der f 1)-induced epithelial cytokine release through aryl hydrocarbon receptor in asthma. Allergy. 2019;74(9):1675–90.
pubmed: 30982974 doi: 10.1111/all.13784
Younossi ZM. Non-alcoholic fatty liver disease - a global public health perspective. J Hepatol. 2019;70(3):531–44.
pubmed: 30414863 doi: 10.1016/j.jhep.2018.10.033

Auteurs

Muhammad Imran (M)

Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
Iqra University, Karachi, Pakistan.

Frédéric Chalmel (F)

Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France.

Odile Sergent (O)

Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France.

Bertrand Evrard (B)

Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France.

Hélène Le Mentec (H)

Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France.

Antoine Legrand (A)

Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France.

Aurélien Dupont (A)

Univ Rennes, Biosit - UMS 3480, US_S 018, F-35000, Rennes, France.

Maëlle Bescher (M)

Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France.

Simon Bucher (S)

Univ Rennes, Inserm, Inrae, Institut NUMECAN (Nutrition Metabolisms and Cancer)-UMR_S 13 1241, and UMR_A 1341, 35000, Rennes, France.

Bernard Fromenty (B)

Univ Rennes, Inserm, Inrae, Institut NUMECAN (Nutrition Metabolisms and Cancer)-UMR_S 13 1241, and UMR_A 1341, 35000, Rennes, France.

Laurence Huc (L)

Université de Toulouse, Inrae, ENVT, INP-Purpan, UPS, Toxalim (Research Centre in Food Toxicology), 31027, Toulouse, France.

Lydie Sparfel (L)

Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France.

Dominique Lagadic-Gossmann (D)

Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France.

Normand Podechard (N)

Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France. norman.podechard@univ-rennes1.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH