Transcriptomic analysis in zebrafish larvae identifies iron-dependent mitochondrial dysfunction as a possible key event of NAFLD progression induced by benzo[a]pyrene/ethanol co-exposure.
AhR
B[a]P
Ethanol
Iron homeostasis
Mitochondrial dysfunction
NAFLD
Zebrafish
Journal
Cell biology and toxicology
ISSN: 1573-6822
Titre abrégé: Cell Biol Toxicol
Pays: Switzerland
ID NLM: 8506639
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
received:
31
08
2021
accepted:
28
02
2022
medline:
9
6
2023
pubmed:
13
4
2022
entrez:
12
4
2022
Statut:
ppublish
Résumé
Non-alcoholic fatty liver disease (NAFLD) is a worldwide epidemic for which environmental contaminants are increasingly recognized as important etiological factors. Among them, the combination of benzo[a]pyrene (B[a]P), a potent environmental carcinogen, with ethanol, was shown to induce the transition of steatosis toward steatohepatitis. However, the underlying mechanisms involved remain to be deciphered. In this context, we used high-fat diet fed zebrafish model, in which we previously observed progression of steatosis to a steatohepatitis-like state following a 7-day-co-exposure to 43 mM ethanol and 25 nM B[a]P. Transcriptomic analysis highlighted the potent role of mitochondrial dysfunction, alterations in heme and iron homeostasis, involvement of aryl hydrocarbon receptor (AhR) signaling, and oxidative stress. Most of these mRNA dysregulations were validated by RT-qPCR. Moreover, similar changes were observed using a human in vitro hepatocyte model, HepaRG cells. The mitochondria structural and functional alterations were confirmed by transmission electronic microscopy and Seahorse technology, respectively. Involvement of AhR signaling was evidenced by using in vivo an AhR antagonist, CH223191, and in vitro in AhR-knock-out HepaRG cells. Furthermore, as co-exposure was found to increase the levels of both heme and hemin, we investigated if mitochondrial iron could induce oxidative stress. We found that mitochondrial labile iron content was raised in toxicant-exposed larvae. This increase was prevented by the iron chelator, deferoxamine, which also inhibited liver co-exposure toxicity. Overall, these results suggest that the increase in mitochondrial iron content induced by B[a]P/ethanol co-exposure causes mitochondrial dysfunction that contributes to the pathological progression of NAFLD.
Identifiants
pubmed: 35412187
doi: 10.1007/s10565-022-09706-4
pii: 10.1007/s10565-022-09706-4
doi:
Substances chimiques
Ethanol
3K9958V90M
Benzo(a)pyrene
3417WMA06D
Heme
42VZT0U6YR
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
371-390Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Batiha GE-S, Beshbishy AM, Ikram M, Mulla ZS, El-Hack MEA, Taha AE, et al. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods. 2020;9(3):374.
pubmed: 32210182
pmcid: 7143931
doi: 10.3390/foods9030374
Begriche K, Massart J, Robin M-A, Bonnet F, Fromenty B. Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatol Baltim Md. 2013;58(4):1497–507.
doi: 10.1002/hep.26226
Begriche K, Massart J, Fromenty B. Chapter 15 - Mitochondrial dysfunction induced by xenobiotics: involvement in steatosis and steatohepatitis. In: Morio B, Pénicaud L, Rigoulet M, editors. Mitochondria in obesity and type 2 diabetes. Academic Press; 2019. pp. 347–64. https://doi.org/10.1016/B978-0-12-811752-1.00015-8 .
Britton LJ, Subramaniam VN, Crawford DH. Iron and non-alcoholic fatty liver disease. World J Gastroenterol. 2016;22(36):8112–22.
pubmed: 27688653
pmcid: 5037080
doi: 10.3748/wjg.v22.i36.8112
Bucher S, Le Guillou D, Allard J, Pinon G, Begriche K, Tête A, et al. Possible involvement of mitochondrial dysfunction and oxidative stress in a cellular model of NAFLD progression induced by benzo[a]pyrene/ethanol coexposure. Oxid Med Cell Longev. 2018a;2018:4396403.
Bucher S, Tête A, Podechard N, Liamin M, Le Guillou D, Chevanne M, et al. Co-exposure to benzo[a]pyrene and ethanol induces a pathological progression of liver steatosis in vitro and in vivo. Sci Rep. 2018b;8(1):5963.
Burton GW, Ingold KU. Vitamin E as an in vitro and in vivo antioxidant. Ann N Y Acad Sci. 1989;570(1 Vitamin E):7–22.
pubmed: 2698111
doi: 10.1111/j.1749-6632.1989.tb14904.x
Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell Mol Life Sci CMLS. 2016;73(11–12):2195–209.
pubmed: 27048822
doi: 10.1007/s00018-016-2194-1
Cella M, Colonna M. Aryl hydrocarbon receptor: linking environment to immunity. Semin Immunol. 2015;27(5):310–4.
pubmed: 26561251
pmcid: 4681659
doi: 10.1016/j.smim.2015.10.002
Chu J, Sadler KC. New school in liver development: lessons from zebrafish. Hepatol Baltim Md. 2009;50(5):1656–63.
doi: 10.1002/hep.23157
Collin A, Hardonnière K, Chevanne M, Vuillemin J, Podechard N, Burel A, et al. Cooperative interaction of benzo[a]pyrene and ethanol on plasma membrane remodeling is responsible for enhanced oxidative stress and cell death in primary rat hepatocytes. Free Radic Biol Med. 2014;72:11–22.
pubmed: 24681337
doi: 10.1016/j.freeradbiomed.2014.03.029
Corradini E, Pietrangelo A. Iron and steatohepatitis. J Gastroenterol Hepatol. 2012;27(Suppl 2):42–6.
pubmed: 22320915
doi: 10.1111/j.1440-1746.2011.07014.x
Das DN, Bhutia SK. Inevitable dietary exposure of benzo[a]pyrene: carcinogenic risk assessment an emerging issues and concerns. Curr Opin Food Sci. 2018;24:16–25.
doi: 10.1016/j.cofs.2018.10.008
Donegan RK, Moore CM, Hanna DA, Reddi AR. Handling heme: the mechanisms underlying the movement of heme within and between cells. Free Radic Biol Med. 2019;133:88–100.
pubmed: 30092350
doi: 10.1016/j.freeradbiomed.2018.08.005
Driessen M, Kienhuis AS, Pennings JLA, Pronk TE, van de Brandhof E-J, Roodbergen M, et al. Exploring the zebrafish embryo as an alternative model for the evaluation of liver toxicity by histopathology and expression profiling. Arch Toxicol. 2013;87(5):807–23.
pubmed: 23559145
doi: 10.1007/s00204-013-1039-z
Driessen M, Kienhuis AS, Vitins AP, Pennings JLA, Pronk TE, van den Brandhof E-J, et al. Gene expression markers in the zebrafish embryo reflect a hepatotoxic response in animal models and humans. Toxicol Lett. 2014;230(1):48–56.
pubmed: 25064622
doi: 10.1016/j.toxlet.2014.06.844
Fader KA, Zacharewski TR. Beyond the aryl hydrocarbon receptor: pathway interactions in the hepatotoxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds. Curr Opin Toxicol. 2017;2:36–41.
pubmed: 28948239
pmcid: 5609723
doi: 10.1016/j.cotox.2017.01.010
Fader KA, Nault R, Kirby MP, Markous G, Matthews J, Zacharewski TR. Convergence of hepcidin deficiency, systemic iron overloading, heme accumulation, and REV-ERBα/β activation in aryl hydrocarbon receptor-elicited hepatotoxicity. Toxicol Appl Pharmacol. 2017;321:1–17.
pubmed: 28213091
pmcid: 5421516
doi: 10.1016/j.taap.2017.02.006
Fazel Y, Koenig AB, Sayiner M, Goodman ZD, Younossi ZM. Epidemiology and natural history of non-alcoholic fatty liver disease. Metabolism. 2016;65(8):1017–25.
pubmed: 26997539
doi: 10.1016/j.metabol.2016.01.012
Goessling W, Sadler KC. Zebrafish: an important tool for liver disease research. Gastroenterology. 2015;149(6):1361–77.
pubmed: 26319012
doi: 10.1053/j.gastro.2015.08.034
Goldstone JV, McArthur AG, Kubota A, Zanette J, Parente T, Jönsson ME, et al. Identification and developmental expression of the full complement of cytochrome P450 genes in zebrafish. BMC Genomics. 2010;11:643.
pubmed: 21087487
pmcid: 3012610
doi: 10.1186/1471-2164-11-643
Goodale BC, La Du JK, Bisson WH, Janszen DB, Waters KM, Tanguay RL. AHR2 mutant reveals functional diversity of aryl hydrocarbon receptors in zebrafish. PloS One. 2012;7(1):e29346.
pubmed: 22242167
pmcid: 3252317
doi: 10.1371/journal.pone.0029346
Gorria M, Huc L, Sergent O, Rebillard A, Gaboriau F, Dimanche-Boitrel M-T, et al. Protective effect of monosialoganglioside GM1 against chemically induced apoptosis through targeting of mitochondrial function and iron transport. Biochem Pharmacol. 2006a;72(10):1343–53.
Gorria M, Tekpli X, Sergent O, Huc L, Gaboriau F, Rissel M, et al. Membrane fluidity changes are associated with benzo[a]pyrene-induced apoptosis in F258 cells: protection by exogenous cholesterol. Ann N Y Acad Sci. 2006b;1090:108–12.
Grattagliano I, Montezinho LP, Oliveira PJ, Frühbeck G, Gómez-Ambrosi J, Montecucco F, et al. Targeting mitochondria to oppose the progression of nonalcoholic fatty liver disease. Biochem Pharmacol. 2019;160:34–45.
pubmed: 30508523
doi: 10.1016/j.bcp.2018.11.020
Hardonnière K, Saunier E, Lemarié A, Fernier M, Gallais I, Héliès-Toussaint C, et al. The environmental carcinogen benzo[a]pyrene induces a Warburg-like metabolic reprogramming dependent on NHE1 and associated with cell survival. Sci Rep. 2016;04(6):30776.
doi: 10.1038/srep30776
Hardonnière K, Fernier M, Gallais I, Mograbi B, Podechard N, Le Ferrec E, et al. Role for the ATPase inhibitory factor 1 in the environmental carcinogen-induced Warburg phenotype. Sci Rep. 2017;7(1):195.
pubmed: 28298645
pmcid: 5428028
doi: 10.1038/s41598-017-00269-7
Hwang HJ, Dornbos P, Steidemann M, Dunivin TK, Rizzo M, LaPres JJ. Mitochondrial-targeted aryl hydrocarbon receptor and the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cellular respiration and the mitochondrial proteome. Toxicol Appl Pharmacol. 2016;01(304):121–32.
doi: 10.1016/j.taap.2016.04.005
Imran M, Sergent O, Tête A, Gallais I, Chevanne M, Lagadic-Gossmann D, et al. Membrane remodeling as a key player of the hepatotoxicity induced by co-exposure to benzo[a]pyrene and ethanol of obese zebrafish larvae. Biomolecules. 2018;8(2):26. https://doi.org/10.3390/biom8020026 .
doi: 10.3390/biom8020026
pubmed: 29757947
pmcid: 6023014
International Agency for Research on Cancer (IARC). Chemical agents and related occupations. Published by the International Agency for Research on Cancer. Geneva: WHO Press, World Health Organization; 2012.
Ishihara N, Mihara K. PARL paves the way to apoptosis. Nat Cell Biol. 2017;19(4):263–5.
pubmed: 28361942
doi: 10.1038/ncb3504
Joshi-Barve S, Kirpich I, Cave MC, Marsano LS, McClain CJ. Alcoholic, nonalcoholic, and toxicant-associated steatohepatitis: mechanistic similarities and differences. Cell Mol Gastroenterol Hepatol. 2015;1(4):356–67.
pubmed: 28210688
pmcid: 5301292
doi: 10.1016/j.jcmgh.2015.05.006
Kumar S, Bandyopadhyay U. Free heme toxicity and its detoxification systems in human. Toxicol Lett. 2005;157(3):175–88.
pubmed: 15917143
doi: 10.1016/j.toxlet.2005.03.004
Li Z, Li Y, Zhang H-X, Guo J-R, Lam CWK, Wang C-Y, et al. Mitochondria-mediated pathogenesis and therapeutics for non-alcoholic fatty liver disease. Mol Nutr Food Res. 2019;14:e1900043.
doi: 10.1002/mnfr.201900043
Liamin M, Le Mentec H, Evrard B, Huc L, Chalmel F, Boutet-Robinet E, et al. Genome-wide transcriptional and functional analysis of human T lymphocytes treated with benzo[α]pyrene. Int J Mol Sci. 2018;19(11):3626. https://doi.org/10.3390/ijms19113626 .
doi: 10.3390/ijms19113626
pubmed: 30453624
pmcid: 6274903
Luan Y, Zhang F, Cheng Y, Liu J, Huang R, Yan M, et al. Hemin improves insulin sensitivity and lipid metabolism in cultured hepatocytes and mice fed a high-fat diet. Nutrients. 2017;9(8):805.
pubmed: 28933767
pmcid: 5579599
doi: 10.3390/nu9080805
Lv H, Shang P. The significance, trafficking and determination of labile iron in cytosol, mitochondria and lysosomes. Met Integr Biometal Sci. 2018;10(7):899–916.
doi: 10.1039/C8MT00048D
Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol J Hematol Oncol. 2019;12(1):34.
pubmed: 30925886
doi: 10.1186/s13045-019-0720-y
Qi J, Kim J-W, Zhou Z, Lim C-W, Kim B. Ferroptosis affects the progression of nonalcoholic steatohepatitis via the modulation of lipid peroxidation-mediated cell death in mice. Am J Pathol. 2020;190(1):68–81.
pubmed: 31610178
doi: 10.1016/j.ajpath.2019.09.011
Raftery TD, Jayasundara N, Di Giulio RT. A bioenergetics assay for studying the effects of environmental stressors on mitochondrial function in vivo in zebrafish larvae. Comp Biochem Physiol Part C Toxicol Pharmacol. 2017;192:23–32.
doi: 10.1016/j.cbpc.2016.12.001
Schlegel A. Studying non-alcoholic fatty liver disease with zebrafish: a confluence of optics, genetics, and physiology. Cell Mol Life Sci. 2012;69(23):3953–61. https://doi.org/10.1007/s00018-012-1037-y .
doi: 10.1007/s00018-012-1037-y
pubmed: 22678663
pmcid: 3492697
Severson TJ, Besur S, Bonkovsky HL. Genetic factors that affect nonalcoholic fatty liver disease: a systematic clinical review. World J Gastroenterol. 2016;22(29):6742.
pubmed: 27547017
pmcid: 4970479
doi: 10.3748/wjg.v22.i29.6742
Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K, et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc. 2014;136(12):4551–6.
pubmed: 24592866
pmcid: 3985476
doi: 10.1021/ja411006a
Smith AG, Carthew P, Clothier B, Constantin D, Francis JE, Madra S. Synergy of iron in the toxicity and carcinogenicity of polychlorinated biphenyls (PCBs) and related chemicals. Toxicol Lett. 1995;82–83:945–50.
pubmed: 8597166
doi: 10.1016/0378-4274(95)03530-3
Szabo G, Saha B. Alcohol’s effect on host defense. Alcohol Res Curr Rev. 2015;37(2):159–70.
Szigeti A, Bellyei S, Gasz B, Boronkai A, Hocsak E, Minik O, et al. Induction of necrotic cell death and mitochondrial permeabilization by heme binding protein 2/SOUL. FEBS Lett. 2006;580(27):6447–54.
pubmed: 17098234
doi: 10.1016/j.febslet.2006.10.067
Tappenden DM, Lynn SG, Crawford RB, Lee K, Vengellur A, Kaminski NE, et al. The aryl hydrocarbon receptor interacts with ATP5α1, a subunit of the ATP synthase complex, and modulates mitochondrial function. Toxicol Appl Pharmacol. 2011;254(3):299–310.
pubmed: 21616089
pmcid: 3133825
doi: 10.1016/j.taap.2011.05.004
Tekpli X, Rissel M, Huc L, Catheline D, Sergent O, Rioux V, et al. Membrane remodeling, an early event in benzo[a]pyrene-induced apoptosis. Toxicol Appl Pharmacol. 2010;243(1):68–76.
pubmed: 19931295
doi: 10.1016/j.taap.2009.11.014
Tête A, Gallais I, Imran M, Chevanne M, Liamin M, Sparfel L, et al. Mechanisms involved in the death of steatotic WIF-B9 hepatocytes co-exposed to benzo[a]pyrene and ethanol: a possible key role for xenobiotic metabolism and nitric oxide. Free Radic Biol Med. 2018;129:323–37.
pubmed: 30268890
doi: 10.1016/j.freeradbiomed.2018.09.042
Tsurusaki S, Tsuchiya Y, Koumura T, Nakasone M, Sakamoto T, Matsuoka M, et al. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis. Cell Death Dis. 2019;10(6):449.
pubmed: 31209199
pmcid: 6579767
doi: 10.1038/s41419-019-1678-y
Uno S, Nebert DW, Makishima M. Cytochrome P450 1A1 (CYP1A1) protects against nonalcoholic fatty liver disease caused by Western diet containing benzo[a]pyrene in mice. Food Chem. Toxicol Int J Publ Br Ind Biol Res Assoc. 2018;113:73–82.
Wahlang B, Beier JI, Clair HB, Bellis-Jones HJ, Falkner KC, McClain CJ, et al. Toxicant-associated steatohepatitis. Toxicol Pathol. 2013;41(2):343–60.
pubmed: 23262638
doi: 10.1177/0192623312468517
Wahlang B, Jin J, Beier JI, Hardesty JE, Daly EF, Schnegelberger RD, et al. Mechanisms of environmental contributions to fatty liver disease. Curr Environ Health Rep. 2019;6(3):80–94.
pubmed: 31134516
pmcid: 6698418
doi: 10.1007/s40572-019-00232-w
Wang K-J, Bo J, Yang M, Hong H-S, Wang X-H, Chen F-Y, et al. Hepcidin gene expression induced in the developmental stages of fish upon exposure to Benzo[a]pyrene (BaP). Mar Environ Res. 2009;67(3):159–65.
pubmed: 19185344
doi: 10.1016/j.marenvres.2008.12.008
Wang E, Liu X, Tu W, Do DC, Yu H, Yang L, et al. Benzo(a)pyrene facilitates dermatophagoides group 1 (Der f 1)-induced epithelial cytokine release through aryl hydrocarbon receptor in asthma. Allergy. 2019;74(9):1675–90.
pubmed: 30982974
doi: 10.1111/all.13784
Younossi ZM. Non-alcoholic fatty liver disease - a global public health perspective. J Hepatol. 2019;70(3):531–44.
pubmed: 30414863
doi: 10.1016/j.jhep.2018.10.033