A Structured Approach to Optimizing Animal Model Selection for Human Translation: The Animal Model Quality Assessment.
Animal Model Quality Assessment (AMQA)
Animal model
attrition
colitis
drug discovery
Journal
ILAR journal
ISSN: 1930-6180
Titre abrégé: ILAR J
Pays: England
ID NLM: 9516416
Informations de publication
Date de publication:
31 12 2021
31 12 2021
Historique:
received:
18
06
2021
revised:
04
02
2022
accepted:
16
02
2022
pubmed:
15
4
2022
medline:
30
6
2022
entrez:
14
4
2022
Statut:
ppublish
Résumé
Animal studies in pharmaceutical drug discovery are common in preclinical research for compound evaluation before progression into human clinical trials. However, high rates of drug development attrition have prompted concerns regarding animal models and their predictive translatability to the clinic. To improve the characterization and evaluation of animal models for their translational relevance, the authors developed a tool to transparently reflect key features of a model that may be considered in both the application of the model but also the likelihood of successful translation of the outcomes to human patients. In this publication, we describe the rationale for the development of the Animal Model Quality Assessment tool, the questions used for the animal model assessment, and a high-level scoring system for the purpose of defining predictive translatability. Finally, we provide an example of a completed Animal Model Quality Assessment for the adoptive T-cell transfer model of colitis as a mouse model to mimic inflammatory bowel disease in humans.
Identifiants
pubmed: 35421235
pii: 6568470
doi: 10.1093/ilar/ilac004
pmc: PMC9291347
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
66-76Informations de copyright
© The Author(s) 2021. Published by Oxford University Press on behalf of the National Academies of Sciences, Engineering, and Medicine. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Références
Nat Immunol. 2009 Jun;10(6):603-9
pubmed: 19448631
J Clin Invest. 2006 May;116(5):1310-6
pubmed: 16670770
Int J Inflam. 2012;2012:412178
pubmed: 22536543
Lab Anim. 2016 Jun;50(1 Suppl):1-20
pubmed: 27188275
Toxicol Pathol. 2019 Feb;47(2):121-128
pubmed: 30651043
BMC Med Res Methodol. 2014 Mar 26;14:43
pubmed: 24667063
PLoS Biol. 2020 Jul 14;18(7):e3000410
pubmed: 32663219
Front Mol Biosci. 2020 Apr 15;7:57
pubmed: 32351971
Inflamm Bowel Dis. 2013 Jul;19(8):1567-76
pubmed: 23689808
Nat Biotechnol. 2020 Jan;38(1):14-18
pubmed: 31882955
Int Immunopharmacol. 2002 Apr;2(5):653-72
pubmed: 12013505
Int Immunol. 2007 Dec;19(12):1431-40
pubmed: 17981790
Mamm Genome. 2003 Jun;14(6):396-403
pubmed: 12879362
Biochem Pharmacol. 2014 Jan 1;87(1):162-71
pubmed: 23954708
Nature. 2012 Mar 28;483(7391):531-3
pubmed: 22460880
Drug Discov Today. 2006 Apr;11(7-8):355-63
pubmed: 16580978
Int J Clin Exp Med. 2015 Dec 15;8(12):22529-42
pubmed: 26885239
Int Immunol. 1993 Nov;5(11):1461-71
pubmed: 7903159
Mucosal Immunol. 2011 Mar;4(2):148-57
pubmed: 21228770
PLoS Biol. 2014 May 20;12(5):e1001863
pubmed: 24844265
Nat Rev Neurosci. 2020 Jul;21(7):384-393
pubmed: 32488205
Dis Model Mech. 2015 Jan;8(1):1-16
pubmed: 25561744
Nat Rev Drug Discov. 2016 Dec;15(12):817-818
pubmed: 27811931
Pathophysiology. 2014 Nov;21(4):267-88
pubmed: 24935242
Vet Pathol. 2013 Sep;50(5):877-92
pubmed: 23628693
Animals (Basel). 2013 Mar 19;3(1):238-73
pubmed: 26487317
J Immunol. 2004 Mar 1;172(5):2731-8
pubmed: 14978070
Nature. 2012 Oct 11;490(7419):187-91
pubmed: 23060188
PLoS Biol. 2010 Jun 29;8(6):e1000412
pubmed: 20613859
Gastroenterology. 2009 Jan;136(1):257-67
pubmed: 18992745
PLoS One. 2019 Jun 13;14(6):e0218014
pubmed: 31194784
World J Gastroenterol. 2014 Jan 7;20(1):91-9
pubmed: 24415861
PLoS Med. 2013;10(7):e1001489
pubmed: 23935460
Drug Discov Today. 2021 Feb;26(2):308-314
pubmed: 33129994
Int Immunopharmacol. 2005 Jun;5(6):993-1006
pubmed: 15829415
Nat Rev Gastroenterol Hepatol. 2015 Dec;12(12):720-7
pubmed: 26323879