Harmonizing functional connectivity reduces scanner effects in community detection.
Brain networks
Community detection
Functional connectivity
Harmonization
Network analyses
Site effects
Journal
NeuroImage
ISSN: 1095-9572
Titre abrégé: Neuroimage
Pays: United States
ID NLM: 9215515
Informations de publication
Date de publication:
01 08 2022
01 08 2022
Historique:
received:
19
11
2021
revised:
06
04
2022
accepted:
07
04
2022
pubmed:
15
4
2022
medline:
27
5
2022
entrez:
14
4
2022
Statut:
ppublish
Résumé
Community detection on graphs constructed from functional magnetic resonance imaging (fMRI) data has led to important insights into brain functional organization. Large studies of brain community structure often include images acquired on multiple scanners across different studies. Differences in scanner can introduce variability into the downstream results, and these differences are often referred to as scanner effects. Such effects have been previously shown to significantly impact common network metrics. In this study, we identify scanner effects in data-driven community detection results and related network metrics. We assess a commonly employed harmonization method and propose new methodology for harmonizing functional connectivity that leverage existing knowledge about network structure as well as patterns of covariance in the data. Finally, we demonstrate that our new methods reduce scanner effects in community structure and network metrics. Our results highlight scanner effects in studies of brain functional organization and provide additional tools to address these unwanted effects. These findings and methods can be incorporated into future functional connectivity studies, potentially preventing spurious findings and improving reliability of results.
Identifiants
pubmed: 35421567
pii: S1053-8119(22)00322-6
doi: 10.1016/j.neuroimage.2022.119198
pmc: PMC9202339
mid: NIHMS1801910
pii:
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Intramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
119198Subventions
Organisme : NIMH NIH HHS
ID : R37 MH125829
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH123550
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH120482
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG054409
Pays : United States
Organisme : NIH HHS
ID : S10 OD023495
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS085211
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS060910
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01 EB022573
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH112847
Pays : United States
Informations de copyright
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of Competing Interest Authors declare that they have no conflict of interest.
Références
Hum Brain Mapp. 2022 Mar;43(4):1179-1195
pubmed: 34904312
Biostatistics. 2007 Jan;8(1):118-27
pubmed: 16632515
Neuroimage. 2021 Jan 15;225:117464
pubmed: 33075555
Cereb Cortex. 2018 Apr 1;28(4):1383-1395
pubmed: 29300840
Trends Cogn Sci. 2019 Apr;23(4):293-304
pubmed: 30827796
Front Aging Neurosci. 2019 Sep 04;11:234
pubmed: 31555124
Neuroimage. 2006 Nov 1;33(2):471-81
pubmed: 16952468
Neuroimage. 2020 May 1;211:116612
pubmed: 32061801
Neuron. 2011 Nov 17;72(4):665-78
pubmed: 22099467
Neuroimage Clin. 2018 Mar 16;18:849-870
pubmed: 29876270
PLoS One. 2014 Feb 21;9(2):e88669
pubmed: 24586367
Nature. 1998 Jun 4;393(6684):440-2
pubmed: 9623998
Neuroimage. 2018 Feb 15;167:104-120
pubmed: 29155184
J Stat Mech. 2005 Feb 1;2005(P02001):nihpa35573
pubmed: 18159217
Neuroimage. 2012 Apr 2;60(2):1117-26
pubmed: 22281670
Biostatistics. 2021 Jul 17;22(3):629-645
pubmed: 31851318
Neuroimage. 2014 Jun;93 Pt 1:74-94
pubmed: 24583255
Biostatistics. 2008 Jul;9(3):432-41
pubmed: 18079126
Nat Commun. 2018 Jan 24;9(1):346
pubmed: 29367627
Hum Brain Mapp. 2018 Nov;39(11):4213-4227
pubmed: 29962049
Biometrics. 2010 Jun;66(2):636-43
pubmed: 19673867
Neuroimage. 2017 Nov 1;161:149-170
pubmed: 28826946
Med Image Anal. 2011 Aug;15(4):622-39
pubmed: 20688559
Cereb Cortex. 2005 Sep;15(9):1332-42
pubmed: 15635061
PLoS Biol. 2019 Apr 18;17(4):e3000042
pubmed: 30998673
Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8577-82
pubmed: 16723398
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 2):065103
pubmed: 16089800
Neuroimage. 2010 Sep;52(3):1059-69
pubmed: 19819337
Neuroimage. 2017 Apr 1;149:220-232
pubmed: 28161310
Curr Opin Neurobiol. 2020 Dec;65:120-128
pubmed: 33242721
Neuroimage. 2002 Oct;17(2):825-41
pubmed: 12377157
Sci Rep. 2019 Mar 26;9(1):5233
pubmed: 30914743
Neuroimage. 2012 Feb 15;59(4):3889-900
pubmed: 22119652
Neuroimage. 2011 Jun 15;56(4):2068-79
pubmed: 21459148
Neuroimage. 2006 Aug 1;32(1):228-37
pubmed: 16777436
Nat Rev Neurosci. 2018 Sep;19(9):566-578
pubmed: 30002509
Alzheimers Dement. 2021 Jan;17(1):89-102
pubmed: 32920988
IEEE J Biomed Health Inform. 2019 Jan;23(1):14-25
pubmed: 30080151
Neuroimage. 2018 Apr 15;170:332-347
pubmed: 28219775
Neuroimage. 2012 Feb 1;59(3):2142-54
pubmed: 22019881
Psychiatry Clin Neurosci. 2018 Sep;72(9):683-691
pubmed: 29774625
Algorithms. 2017 Sep;10(3):
pubmed: 29046743
Sci Rep. 2012;2:336
pubmed: 22468223
J Clin Epidemiol. 1988;41(11):1105-16
pubmed: 3204420
Front Neurosci. 2015 Oct 27;9:395
pubmed: 26578859