A conserved module regulates receptor kinase signalling in immunity and development.
Journal
Nature plants
ISSN: 2055-0278
Titre abrégé: Nat Plants
Pays: England
ID NLM: 101651677
Informations de publication
Date de publication:
04 2022
04 2022
Historique:
received:
07
02
2022
accepted:
14
03
2022
pubmed:
16
4
2022
medline:
26
4
2022
entrez:
15
4
2022
Statut:
ppublish
Résumé
Ligand recognition by cell-surface receptors underlies development and immunity in both animals and plants. Modulating receptor signalling is critical for appropriate cellular responses but the mechanisms ensuring this are poorly understood. Here, we show that signalling by plant receptors for pathogen-associated molecular patterns (PAMPs) in immunity and CLAVATA3/EMBRYO SURROUNDING REGION-RELATED peptides (CLEp) in development uses a similar regulatory module. In the absence of ligand, signalling is dampened through association with specific type-2C protein phosphatases. Upon activation, PAMP and CLEp receptors phosphorylate divergent cytosolic kinases, which, in turn, phosphorylate the phosphatases, thereby promoting receptor signalling. Our work reveals a regulatory circuit shared between immune and developmental receptor signalling, which may have broader important implications for plant receptor kinase-mediated signalling in general.
Identifiants
pubmed: 35422079
doi: 10.1038/s41477-022-01134-w
pii: 10.1038/s41477-022-01134-w
pmc: PMC9639402
mid: NIHMS1841884
doi:
Substances chimiques
Ligands
0
Pathogen-Associated Molecular Pattern Molecules
0
Protein Kinases
EC 2.7.-
Phosphoprotein Phosphatases
EC 3.1.3.16
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
356-365Subventions
Organisme : NIGMS NIH HHS
ID : R35 GM119614
Pays : United States
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Hohmann, U., Lau, K. & Hothorn, M. The structural basis of ligand perception and signal activation by receptor kinases. Annu. Rev. Plant Biol. 68, 109–137 (2017).
pubmed: 28125280
doi: 10.1146/annurev-arplant-042916-040957
Dievart, A., Gottin, C., Périn, C., Ranwez, V. & Chantret, N. Origin and diversity of plant receptor-like kinases. Annu. Rev. Plant Biol. 71, 131–156 (2020).
pubmed: 32186895
doi: 10.1146/annurev-arplant-073019-025927
Shiu, S. & Bleecker, A. B. Expansion of the receptor-like kinase/pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 132, 530–543 (2003).
pubmed: 12805585
doi: 10.1104/pp.103.021964
Gómez-Gómez, L. & Boller, T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5, 1003–1011 (2000).
pubmed: 10911994
doi: 10.1016/S1097-2765(00)80265-8
Zipfel, C. et al. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764–767 (2004).
pubmed: 15085136
doi: 10.1038/nature02485
Zipfel, C. et al. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125, 749–760 (2006).
pubmed: 16713565
doi: 10.1016/j.cell.2006.03.037
Liang, X. & Zhou, J. Receptor-like cytoplasmic kinases: central players in plant receptor kinase-mediated signaling. Annu. Rev. Plant Biol. 69, 267–299 (2018).
pubmed: 29719165
doi: 10.1146/annurev-arplant-042817-040540
Veronese, P. et al. The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 18, 257–273 (2006).
pubmed: 16339855
pmcid: 1323497
doi: 10.1105/tpc.105.035576
Lu, D. et al. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc. Natl Acad. Sci. USA 107, 496–501 (2010).
pubmed: 20018686
doi: 10.1073/pnas.0909705107
Kadota, Y. et al. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol. Cell 54, 43–55 (2014).
pubmed: 24630626
doi: 10.1016/j.molcel.2014.02.021
Li, L. et al. The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15, 329–338 (2014).
pubmed: 24629339
doi: 10.1016/j.chom.2014.02.009
DeFalco, T. A. & Zipfel, C. Molecular mechanisms of early plant pattern-triggered immune signaling. Mol. Cell 81, 3449–3467 (2021).
pubmed: 34403694
doi: 10.1016/j.molcel.2021.07.029
Couto, D. et al. The Arabidopsis protein phosphatase PP2C38 negatively regulates the central immune kinase BIK1. PLoS Pathog. 12, e1005811 (2016).
pubmed: 27494702
pmcid: 4975489
doi: 10.1371/journal.ppat.1005811
Holton, N., Nekrasov, V., Ronald, P. C. & Zipfel, C. The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots. PLoS Pathog. 11, e1004602 (2015).
pubmed: 25607985
pmcid: 4301810
doi: 10.1371/journal.ppat.1004602
Park, C.-J. et al. Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity. PLoS Biol. 6, e231 (2008).
pubmed: 18817453
pmcid: 2553837
doi: 10.1371/journal.pbio.0060231
Segonzac, C. et al. Negative control of BAK1 by protein phosphatase 2A during plant innate immunity. EMBO J. 33, 2069–2079 (2014).
pubmed: 25085430
pmcid: 4195773
doi: 10.15252/embj.201488698
Couto, D. & Zipfel, C. Regulation of pattern recognition receptor signalling in plants. Nat. Rev. Immunol. 16, 537–552 (2016).
pubmed: 27477127
doi: 10.1038/nri.2016.77
Yu, L. P., Miller, A. K. & Clark, S. E. POLTERGEIST encodes a protein phosphatase 2C that regulates CLAVATA pathways controlling stem cell identity at Arabidopsis shoot and flower meristems. Curr. Biol. 13, 179–188 (2003).
pubmed: 12573213
doi: 10.1016/S0960-9822(03)00042-3
Heazlewood, J. I. et al. PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res. 36, 1015–1021 (2008).
doi: 10.1093/nar/gkm812
Mergner, J. et al. Mass-spectrometry-based draft of the Arabidopsis proteome. Nature 579, 409–414 (2020).
pubmed: 32188942
doi: 10.1038/s41586-020-2094-2
Thor, K. et al. The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature 585, 569–573 (2020).
pubmed: 32846426
pmcid: 8435934
doi: 10.1038/s41586-020-2702-1
Hazak, O. & Hardtke, C. S. CLAVATA 1-type receptors in plant development. J. Exp. Bot. 67, 4827–4833 (2016).
pubmed: 27340234
doi: 10.1093/jxb/erw247
Nimchuk, Z. L. CLAVATA1 controls distinct signaling outputs that buffer shoot stem cell proliferation through a two-step transcriptional compensation loop. PLoS Genet. 13, e1006681 (2017).
pubmed: 28355208
pmcid: 5371295
doi: 10.1371/journal.pgen.1006681
Goad, D. M., Zhu, C. & Kellogg, E. A. Comprehensive identification and clustering of CLV3/ESR-related (CLE) genes in plants finds groups with potentially shared function. New Phytol. 216, 605–616 (2017).
pubmed: 27911469
doi: 10.1111/nph.14348
Fletcher, J. C. Recent advances in Arabidopsis CLE peptide signaling. Trends Plant Sci. 25, 1005–1016 (2020).
pubmed: 32402660
doi: 10.1016/j.tplants.2020.04.014
Yamaguchi, Y. L., Ishida, T. & Sawa, S. CLE peptides and their signaling pathways in plant development. J. Exp. Bot. 67, 4813–4826 (2016).
pubmed: 27229733
doi: 10.1093/jxb/erw208
Anne, P. et al. CLERK is a novel receptor kinase required for sensing of root-active CLE peptides in Arabidopsis. Development 145, dev162354 (2018).
pubmed: 29789310
pmcid: 6001375
doi: 10.1242/dev.162354
Hazak, O. et al. Perception of root‐active CLE peptides requires CORYNE function in the phloem vasculature. EMBO Rep. 18, 1367–1381 (2017).
pubmed: 28607033
pmcid: 5538625
doi: 10.15252/embr.201643535
Rao, S. et al. Roles of receptor-like cytoplasmic kinase VII members in pattern-triggered immune signaling. Plant Physiol. 177, 1679–1690 (2018).
pubmed: 29907700
pmcid: 6084675
Wang, W. et al. Receptor-like cytoplasmic kinases PBL34/35/36 are required for CLE peptide-mediated signaling to maintain shoot apical meristem and root apical meristem homeostasis in Arabidopsis. Plant Cell https://doi.org/10.1093/plcell/koab315 (2021).
Depuydt, S. et al. Suppression of Arabidopsis protophloem differentiation and root meristem growth by CLE45 requires the receptor-like kinase BAM3. Proc. Natl Acad. Sci. USA 110, 7074–7079 (2013).
pubmed: 23569225
pmcid: 3637694
doi: 10.1073/pnas.1222314110
Stahl, Y., Wink, R. H., Ingram, G. C. & Simon, R. A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr. Biol. 19, 909–914 (2009).
pubmed: 19398337
doi: 10.1016/j.cub.2009.03.060
Crook, A. D. et al. BAM1/2 receptor kinase signaling drives CLE peptide-mediated formative cell divisions in Arabidopsis roots. Proc. Natl Acad. Sci. USA 117, 32750–32756 (2020).
pubmed: 33288706
pmcid: 7768756
doi: 10.1073/pnas.2018565117
Rodriguez-Leal, D. et al. Evolution of buffering in a genetic circuit controlling plant stem cell proliferation. Nat. Genet. 51, 786–792 (2019).
pubmed: 30988512
pmcid: 7274162
doi: 10.1038/s41588-019-0389-8
Yu, L. P., Simon, E. J., Trotochaud, A. E. & Clark, S. E. POLTERGEIST functions to regulate meristem development downstream of the CLAVATA loci. Development 127, 1661–1670 (2000).
pubmed: 10725242
doi: 10.1242/dev.127.8.1661
Song, S. K. & Clark, S. E. POL and related phosphatases are dosage-sensitive regulators of meristem and organ development in Arabidopsis. Dev. Biol. 285, 272–284 (2005).
pubmed: 16112663
doi: 10.1016/j.ydbio.2005.06.020
Gagne, J. M. & Clark, S. E. The Arabidopsis stem cell factor POLTERGEIST Is membrane localized and phospholipid stimulated. Plant Cell 22, 729–743 (2010).
pubmed: 20348433
pmcid: 2861466
doi: 10.1105/tpc.109.068734
Song, S. K., Lee, M. M. & Clark, S. E. POL and PLL1 phosphatases are CLAVATA1 signaling intermediates required for Arabidopsis shoot and floral stem cells. Development 133, 4691–4698 (2006).
pubmed: 17079273
doi: 10.1242/dev.02652
Blümke, P. et al. Receptor-like cytoplasmic kinase MAZZA mediates developmental processes with CLAVATA1 family receptors in Arabidopsis. J. Exp. Bot. 72, 4853–4870 (2021).
pubmed: 33909893
doi: 10.1093/jxb/erab183
Fujita, S. et al. SCHENGEN receptor module drives localized ROS production and lignification in plant roots. EMBO J. 39, e103894 (2020).
pubmed: 32187732
pmcid: 7196915
doi: 10.15252/embj.2019103894
Luo, X. et al. Tyrosine phosphorylation of the lectin receptor‐like kinase LORE regulates plant immunity. EMBO J. 39, e102856 (2020).
pubmed: 31922267
pmcid: 7024837
doi: 10.15252/embj.2019102856
Kutschera, A. et al. Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants. Science 364, 178–181 (2019).
pubmed: 30975887
doi: 10.1126/science.aau1279
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772
doi: 10.1038/nmeth.2019
Longair, M. H., Baker, D. A. & Armstrong, J. D. Simple neurite tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics 27, 2453–2454 (2011).
pubmed: 21727141
doi: 10.1093/bioinformatics/btr390
Kurihara, D., Mizuta, Y., Sato, Y. & Higashiyama, T. ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development 142, 4168–4179 (2015).
pubmed: 26493404
pmcid: 4712841
Kang, Y. H. & Hardtke, C. S. Arabidopsis MAKR 5 is a positive effector of BAM 3‐dependent CLE 45 signaling. EMBO Rep. 17, 1145–1154 (2016).
pubmed: 27354416
pmcid: 4967951
doi: 10.15252/embr.201642450
Monaghan, J., Matschi, S., Romeis, T. & Zipfel, C. The calcium-dependent protein kinase CPK28 negatively regulates the BIK1-mediated PAMP-induced calcium burst. Plant Signal. Behav. 10, e1018497 (2015).
pubmed: 26039480
pmcid: 4622532
doi: 10.1080/15592324.2015.1018497
Hansen, S. et al. Design and applications of a clamp for Green Fluorescent Protein with picomolar affinity. Sci. Rep. 7, 6292 (2017).
Nimchuk, Z. L. & Perdue, T. D. Live imaging of shoot meristems on an inverted confocal microscope using an objective lens inverter attachment. Front. Plant Sci. https://doi.org/10.17615/c3nc-5w03 (2017).
Marhava, P. et al. A molecular rheostat adjusts auxin flux to promote root protophloem differentiation. Nature 558, 297–300 (2018).
pubmed: 29875411
doi: 10.1038/s41586-018-0186-z
Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).
pubmed: 30395289
doi: 10.1093/nar/gky1106