Trace Amine-Associated Receptor 2 Is Expressed in the Limbic Brain Areas and Is Involved in Dopamine Regulation and Adult Neurogenesis.

BDNF TAAR2 dopamine limbic system neurogenesis trace amine-associated receptors (TAARs) trace amines

Journal

Frontiers in behavioral neuroscience
ISSN: 1662-5153
Titre abrégé: Front Behav Neurosci
Pays: Switzerland
ID NLM: 101477952

Informations de publication

Date de publication:
2022
Historique:
received: 02 01 2022
accepted: 28 02 2022
entrez: 18 4 2022
pubmed: 19 4 2022
medline: 19 4 2022
Statut: epublish

Résumé

Trace amines are a group of biogenic amines that are structurally and functionally close to classical monoamine neurotransmitters. Trace amine-associated receptors (TAARs) are emerging as promising targets for treating neuropsychiatric disorders. It has been documented that all TAARs, apart from TAAR1, function as olfactory receptors involved in sensing innate odors encoded by volatile amines. However, recently, brain expression and function of TAAR5 were also demonstrated. In this study, we assessed the behavior, brain neurochemistry, and electrophysiology changes in knock-out mice lacking Trace amine-associated receptor 2 (TAAR2) but expressing beta-Galactosidase mapping expression of TAAR2 receptors. As expected, we detected beta-Galactosidase staining in the glomerular layer of the olfactory bulb. However, we also found staining in the deeper layers of the olfactory bulb and several brain regions, including the hippocampus, cerebellum, cortex, raphe nuclei, hypothalamus, and habenula, indicating that TAAR2 receptors are not only expressed in the olfactory system but are also present in the limbic brain areas that receive olfactory input. In behavioral experiments, TAAR2 knock-out (TAAR2-KO) mice showed increased locomotor activity and less immobility in the forced swim test, with no changes in anxiety level. Furthermore, TAAR2-KO mice showed alterations in brain electrophysiological activity-particularly, decreased spectral power of the cortex and striatum in the 0, 9-20 Hz range. TAAR2-KO mice also had elevated tissue dopamine levels in the striatum and an increased dopaminergic neuron number in the Substantia Nigra. In addition, an increased brain-derived neurotrophic factor (BDNF) mRNA level in the striatum and Monoamine Oxidase B (MAO-B) mRNA level in the striatum and midbrain was found in TAAR2-KO mice. Importantly, TAAR2-KO mice demonstrated an increased neuroblast-like and proliferating cell number in the subventricular and subgranular zone, indicating increased adult neurogenesis. These data indicate that in addition to its role in the innate olfaction of volatile amines, TAAR2 is expressed in limbic brain areas and regulates the brain dopamine system, neuronal electrophysiological activity, and adult neurogenesis. These findings further corroborated observations in TAAR1-KO and TAAR5-KO mice, indicating common for TAAR family pattern of expression in limbic brain areas and role in regulating monoamine levels and adult neurogenesis, but with variable involvement of each subtype of TAAR receptors in these functions.

Identifiants

pubmed: 35431833
doi: 10.3389/fnbeh.2022.847410
pmc: PMC9011332
doi:

Types de publication

Journal Article

Langues

eng

Pagination

847410

Informations de copyright

Copyright © 2022 Efimova, Kuvarzin, Mor, Katolikova, Shemiakova, Razenkova, Ptukha, Kozlova, Murtazina, Smirnova, Veshchitskii, Merkulyeva, Volnova, Musienko, Korzhevskii, Budygin and Gainetdinov.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Neurosci Res. 2018 Sep;134:1-9
pubmed: 29339103
J Pharmacol Exp Ther. 2008 Mar;324(3):948-56
pubmed: 18083911
Int J Mol Sci. 2021 Jun 25;22(13):
pubmed: 34202385
Behav Brain Res. 2013 Nov 15;257:62-70
pubmed: 24055493
Neuropsychobiology. 2015;72(3-4):151-64
pubmed: 26901596
Cell Mol Neurobiol. 2020 Mar;40(2):203-213
pubmed: 31385135
Neurosci Behav Physiol. 2009 Jul;39(6):513-6
pubmed: 19517249
Mol Psychiatry. 2022 Mar;27(3):1310-1321
pubmed: 34907395
Stem Cell Res Ther. 2021 Jun 10;12(1):335
pubmed: 34112234
J Leukoc Biol. 2013 Mar;93(3):387-94
pubmed: 23315425
Neuropharmacology. 2021 Jan;182:108373
pubmed: 33132188
N Engl J Med. 2020 Apr 16;382(16):1497-1506
pubmed: 32294346
Int J Alzheimers Dis. 2014;2014:349249
pubmed: 24868482
Cogn Neurodyn. 2013 Aug;7(4):351-9
pubmed: 24427211
Neuropharmacology. 2014 Jun;81:283-91
pubmed: 24565640
Annu Rev Biochem. 1971;40:465-500
pubmed: 4399447
Mol Pharmacol. 2001 Dec;60(6):1181-8
pubmed: 11723224
Science. 1999 Jan 15;283(5400):397-401
pubmed: 9888856
Cell Mol Neurobiol. 2020 Mar;40(2):239-255
pubmed: 31643000
ACS Chem Biol. 2012 Jul 20;7(7):1184-9
pubmed: 22545963
Cell Rep. 2012 Jul 26;2(1):76-88
pubmed: 22840399
Mol Pharmacol. 2009 Aug;76(2):229-35
pubmed: 19389919
Pharmacol Ther. 2017 Dec;180:161-180
pubmed: 28723415
Front Mol Neurosci. 2020 Mar 05;13:18
pubmed: 32194374
J Neurophysiol. 2020 Aug 1;124(2):312-329
pubmed: 32579421
Curr Protoc Cell Biol. 2009 Sep;Chapter 19:Unit 19.12 19.12.1-17
pubmed: 19731224
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
J Neurochem. 2004 Jul;90(2):257-71
pubmed: 15228583
Gen Pharmacol. 1983;14(4):385-90
pubmed: 6352395
Cell Tissue Res. 2021 Jan;383(1):395-407
pubmed: 33237477
Cell Tissue Res. 2009 Nov;338(2):257-69
pubmed: 19763624
Nature. 1977 Apr 21;266(5604):730-2
pubmed: 559941
Nature. 2006 Aug 10;442(7103):645-50
pubmed: 16878137
Trends Pharmacol Sci. 2005 May;26(5):274-81
pubmed: 15860375
Sci Rep. 2014 May 29;4:5101
pubmed: 24869503
Chem Biol Drug Des. 2017 May;89(5):790-796
pubmed: 27863038
Neural Regen Res. 2022 Jun;17(6):1257-1258
pubmed: 34782562
Lancet. 1974 Jul 6;2(7871):52-3
pubmed: 4134443
Front Hum Neurosci. 2019 Jan 09;12:521
pubmed: 30687041
Sci Rep. 2021 Nov 29;11(1):23092
pubmed: 34845253
Anat Sci Int. 2016 Jan;91(1):56-67
pubmed: 26394634
Annu Rev Neurosci. 1999;22:197-217
pubmed: 10202537
Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):8966-71
pubmed: 11459929
Proc Natl Acad Sci U S A. 2015 May 5;112(18):E2403-9
pubmed: 25897022
J Alzheimers Dis. 2018;64(4):1325-1336
pubmed: 29991134
Curr Opin Pharmacol. 2003 Feb;3(1):90-7
pubmed: 12550748
Pharmacol Rev. 2018 Jul;70(3):549-620
pubmed: 29941461
Int J Mol Sci. 2021 Aug 16;22(16):
pubmed: 34445502

Auteurs

Evgeniya V Efimova (EV)

Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.

Saveliy R Kuvarzin (SR)

Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.

Mikael S Mor (MS)

Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.

Nataliia V Katolikova (NV)

Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.

Taisiia S Shemiakova (TS)

Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.

Valeria Razenkova (V)

Institute of Experimental Medicine, St. Petersburg, Russia.

Maria Ptukha (M)

Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.

Alena A Kozlova (AA)

Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.

Ramilya Z Murtazina (RZ)

Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.

Daria Smirnova (D)

Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.

Aleksandr A Veshchitskii (AA)

Pavlov Institute of Physiology Russian Academy of Sciences, St. Petersburg, Russia.

Natalia S Merkulyeva (NS)

Pavlov Institute of Physiology Russian Academy of Sciences, St. Petersburg, Russia.

Anna B Volnova (AB)

Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.

Pavel E Musienko (PE)

Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
Pavlov Institute of Physiology Russian Academy of Sciences, St. Petersburg, Russia.

Dmitrii E Korzhevskii (DE)

Institute of Experimental Medicine, St. Petersburg, Russia.

Evgeny A Budygin (EA)

Department of Neurobiology, Sirius University of Science and Technology, Sochi, Russia.

Raul R Gainetdinov (RR)

Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
St. Petersburg University Hospital, St. Petersburg State University, St. Petersburg, Russia.

Classifications MeSH