Deep Neural Networks and Machine Learning Radiomics Modelling for Prediction of Relapse in Mantle Cell Lymphoma.

deep learning deep neural networks machine learning personalised oncology precision imaging radiomics

Journal

Cancers
ISSN: 2072-6694
Titre abrégé: Cancers (Basel)
Pays: Switzerland
ID NLM: 101526829

Informations de publication

Date de publication:
15 Apr 2022
Historique:
received: 03 02 2022
revised: 05 04 2022
accepted: 12 04 2022
entrez: 23 4 2022
pubmed: 24 4 2022
medline: 24 4 2022
Statut: epublish

Résumé

Mantle cell lymphoma (MCL) is a rare lymphoid malignancy with a poor prognosis characterised by frequent relapse and short durations of treatment response. Most patients present with aggressive disease, but there exist indolent subtypes without the need for immediate intervention. The very heterogeneous behaviour of MCL is genetically characterised by the translocation t(11;14)(q13;q32), leading to Cyclin D1 overexpression with distinct clinical and biological characteristics and outcomes. There is still an unfulfilled need for precise MCL prognostication in real-time. Machine learning and deep learning neural networks are rapidly advancing technologies with promising results in numerous fields of application. This study develops and compares the performance of deep learning (DL) algorithms and radiomics-based machine learning (ML) models to predict MCL relapse on baseline CT scans. Five classification algorithms were used, including three deep learning models (3D SEResNet50, 3D DenseNet, and an optimised 3D CNN) and two machine learning models based on K-nearest Neighbor (KNN) and Random Forest (RF). The best performing method, our optimised 3D CNN, predicted MCL relapse with a 70% accuracy, better than the 3D SEResNet50 (62%) and the 3D DenseNet (59%). The second-best performing method was the KNN-based machine learning model (64%) after principal component analysis for improved accuracy. Our optimised CNN developed by ourselves correctly predicted MCL relapse in 70% of the patients on baseline CT imaging. Once prospectively tested in clinical trials with a larger sample size, our proposed 3D deep learning model could facilitate clinical management by precision imaging in MCL.

Identifiants

pubmed: 35454914
pii: cancers14082008
doi: 10.3390/cancers14082008
pmc: PMC9028737
pii:
doi:

Types de publication

Journal Article

Langues

eng

Références

BMC Cancer. 2018 May 3;18(1):521
pubmed: 29724189
Insights Imaging. 2020 Aug 12;11(1):91
pubmed: 32785796
Pathobiology. 2018;85(1-2):130-145
pubmed: 28719907
Sci Rep. 2020 Jan 20;10(1):737
pubmed: 31959832
J Magn Reson Imaging. 2019 Jun;49(7):e101-e121
pubmed: 30451345
N Engl J Med. 2019 Apr 4;380(14):1347-1358
pubmed: 30943338
Sci Rep. 2015 Aug 17;5:13087
pubmed: 26278466
Abdom Radiol (NY). 2019 Nov;44(11):3764-3774
pubmed: 31055615
Insights Imaging. 2012 Dec;3(6):573-89
pubmed: 23093486
Radiology. 2018 Aug;288(2):407-415
pubmed: 29688159
J Biomed Inform. 2018 Sep;85:189-203
pubmed: 30031057
Comput Methods Programs Biomed. 2020 Mar;185:105153
pubmed: 31678792
Diagn Interv Radiol. 2019 Nov;25(6):485-495
pubmed: 31650960
Radiology. 2016 Feb;278(2):563-77
pubmed: 26579733
Eur Radiol. 2018 Sep;28(9):3832-3839
pubmed: 29626238
J Digit Imaging. 2017 Feb;30(1):95-101
pubmed: 27730417
Med Phys. 2021 Jul;48(7):3665-3678
pubmed: 33735451
BMC Med Res Methodol. 2019 Mar 19;19(1):64
pubmed: 30890124
Am J Nucl Med Mol Imaging. 2021 Aug 15;11(4):260-270
pubmed: 34513279
Eur J Radiol. 2020 Oct;131:109214
pubmed: 32835853
Invest Radiol. 2020 Sep;55(9):601-616
pubmed: 32209816
Ann Nucl Med. 2019 Jul;33(7):449-458
pubmed: 30929200
Eur Radiol. 2017 Mar;27(3):1012-1020
pubmed: 27380902
Nature. 2013 Sep 19;501(7467):338-45
pubmed: 24048066
Blood. 2008 Jan 15;111(2):558-65
pubmed: 17962512
Radiology. 2020 Feb;294(2):445-452
pubmed: 31821122
Blood. 2008 Oct 1;112(7):2687-93
pubmed: 18625886
Front Med (Lausanne). 2018 Apr 06;5:85
pubmed: 29682505
J Clin Oncol. 2016 Apr 20;34(12):1386-94
pubmed: 26926679
Eur J Nucl Med Mol Imaging. 2010 Aug;37(9):1633-42
pubmed: 20428863
J Clin Oncol. 2007 Apr 1;25(10):1216-22
pubmed: 17296973
Neuro Oncol. 2018 Aug 2;20(9):1251-1261
pubmed: 29438500
F1000Res. 2018 Jul 25;7:
pubmed: 30109020
Radiology. 2020 May;295(2):328-338
pubmed: 32154773
IEEE Trans Med Imaging. 2016 May;35(5):1170-81
pubmed: 26441412
J Digit Imaging. 2017 Oct;30(5):622-628
pubmed: 28785873
PLoS One. 2016 Nov 28;11(11):e0166017
pubmed: 27893821
J Clin Oncol. 2009 Mar 10;27(8):1209-13
pubmed: 19188674
Neuroimage Clin. 2018 Aug 19;20:537-542
pubmed: 30175040
Eur J Radiol. 2018 Jul;104:129-135
pubmed: 29857858
Transl Oncol. 2016 Apr;9(2):155-162
pubmed: 27084432
Insights Imaging. 2020 Feb 10;11(1):22
pubmed: 32040647
Sci Rep. 2019 Feb 4;9(1):1322
pubmed: 30718585
Cancer Cell. 2003 Feb;3(2):185-97
pubmed: 12620412
Q J Nucl Med Mol Imaging. 2021 Mar;65(1):72-78
pubmed: 31140234
Am J Hematol. 2011 Oct;86(10):841-5
pubmed: 21922524
Br J Haematol. 2018 Jun;181(5):703-706
pubmed: 28444739
Cancers (Basel). 2020 May 02;12(5):
pubmed: 32370121
Int J Clin Oncol. 2019 Oct;24(10):1292-1300
pubmed: 31165310
Eur Radiol. 2019 Dec;29(12):6911-6921
pubmed: 31236702
Am J Nucl Med Mol Imaging. 2021 Aug 15;11(4):327-331
pubmed: 34513286
Am J Hematol. 2019 Jun;94(6):710-725
pubmed: 30963600
Medicine (Baltimore). 2015 Oct;94(41):e1753
pubmed: 26469915
J Clin Oncol. 2007 Jul 1;25(19):2770-7
pubmed: 17563396
Nat Rev Clin Oncol. 2018 Feb;15(2):81-94
pubmed: 29115304
Eur J Nucl Med Mol Imaging. 2019 Dec;46(13):2656-2672
pubmed: 31214791
Br J Haematol. 2005 Oct;131(1):29-38
pubmed: 16173960
Eur J Cancer. 2012 Mar;48(4):441-6
pubmed: 22257792
Sci Rep. 2018 Aug 29;8(1):13047
pubmed: 30158540
Mol Pharm. 2017 Dec 4;14(12):4462-4475
pubmed: 29096442
Clin Mol Hepatol. 2019 Mar;25(1):21-29
pubmed: 30441889
Methods. 2021 Apr;188:20-29
pubmed: 32504782
Blood. 2016 May 19;127(20):2375-90
pubmed: 26980727
J Neuroradiol. 2015 Jul;42(4):212-21
pubmed: 24997477
Front Oncol. 2019 Sep 03;9:844
pubmed: 31552173
J Zhejiang Univ Sci B. 2018 Jan.;19(1):6-24
pubmed: 29308604
Nat Commun. 2014 Jun 03;5:4006
pubmed: 24892406
Transl Oncol. 2021 Oct;14(10):101188
pubmed: 34343854
Blood. 2010 Apr 22;115(16):3215-23
pubmed: 20032498
Blood Adv. 2020 Jul 14;4(13):2927-2938
pubmed: 32598477
Clin Lung Cancer. 2016 Sep;17(5):441-448.e6
pubmed: 27017476
Eur J Nucl Med Mol Imaging. 2019 Dec;46(13):2715-2721
pubmed: 31190176
Cancers (Basel). 2021 May 17;13(10):
pubmed: 34067726
Mol Oncol. 2015 May;9(5):960-6
pubmed: 25458054
Eur J Nucl Med Mol Imaging. 2019 Dec;46(13):2638-2655
pubmed: 31240330
Radiother Oncol. 2016 Jun;119(3):480-6
pubmed: 27085484
Ann Oncol. 2017 Oct 01;28(10):2489-2495
pubmed: 28961827
J Nucl Med. 2018 Feb;59(2):189-193
pubmed: 29175982
Biol Blood Marrow Transplant. 2006 Dec;12(12):1270-6
pubmed: 17162208
Blood. 2020 Sep 17;136(12):1419-1432
pubmed: 32584970
Ann Oncol. 2017 Jul 1;28(suppl_4):iv62-iv71
pubmed: 28881919
Eur J Nucl Med Mol Imaging. 2021 May;48(5):1362-1370
pubmed: 33097974
NPJ Breast Cancer. 2018 Aug 16;4:24
pubmed: 30131973
Br J Radiol. 2020 Apr;93(1108):20190948
pubmed: 32101448
Sci Rep. 2019 Mar 13;9(1):4329
pubmed: 30867443
J Natl Cancer Inst. 2005 May 18;97(10):715-23
pubmed: 15900041
Nucl Med Commun. 2009 Oct;30(10):770-8
pubmed: 19657307
Eur J Nucl Med Mol Imaging. 2019 Dec;46(13):2760-2769
pubmed: 31286200
Sci Rep. 2018 Aug 22;8(1):12611
pubmed: 30135549
Eur Radiol. 2020 Nov;30(11):6228-6240
pubmed: 32472274
Radiol Artif Intell. 2020 Sep 02;2(5):e200016
pubmed: 33937842
Neural Netw. 2015 Jan;61:85-117
pubmed: 25462637
Nat Rev Clin Oncol. 2017 Dec;14(12):749-762
pubmed: 28975929
Haematologica. 2020 Jan;105(1):e33-e36
pubmed: 31371411

Auteurs

Catharina Silvia Lisson (CS)

Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
Center for Personalized Medicine (ZPM), University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
Artificial Intelligence in Experimental Radiology (XAIRAD).

Christoph Gerhard Lisson (CG)

Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.

Marc Fabian Mezger (MF)

Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
Artificial Intelligence in Experimental Radiology (XAIRAD).
Visual Computing Group, Institute of Media Informatics, Ulm University, James-Franck-Ring, 89081 Ulm, Germany.

Daniel Wolf (D)

Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
Artificial Intelligence in Experimental Radiology (XAIRAD).
Visual Computing Group, Institute of Media Informatics, Ulm University, James-Franck-Ring, 89081 Ulm, Germany.

Stefan Andreas Schmidt (SA)

Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
Center for Personalized Medicine (ZPM), University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.

Wolfgang M Thaiss (WM)

Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
Artificial Intelligence in Experimental Radiology (XAIRAD).
Department of Nuclear Medicine, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.

Eugen Tausch (E)

Department of Internal Medicine III, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
Comprehensive Cancer Center Ulm (CCCU), University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.

Ambros J Beer (AJ)

Center for Personalized Medicine (ZPM), University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
Artificial Intelligence in Experimental Radiology (XAIRAD).
Department of Nuclear Medicine, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
Center for Translational Imaging "From Molecule to Man" (MoMan), Department of Internal Medicine II, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
i2SouI-Innovative Imaging in Surgical Oncology Ulm, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.

Stephan Stilgenbauer (S)

Department of Internal Medicine III, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
Comprehensive Cancer Center Ulm (CCCU), University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.

Meinrad Beer (M)

Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
Center for Personalized Medicine (ZPM), University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
Artificial Intelligence in Experimental Radiology (XAIRAD).
Center for Translational Imaging "From Molecule to Man" (MoMan), Department of Internal Medicine II, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
i2SouI-Innovative Imaging in Surgical Oncology Ulm, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.

Michael Goetz (M)

Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
Artificial Intelligence in Experimental Radiology (XAIRAD).
German Cancer Research Center (DKFZ), Division Medical Image Computing, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.

Classifications MeSH