Characterization of Microfragmented Adipose Tissue Architecture, Mesenchymal Stromal Cell Content and Release of Paracrine Mediators.
adipose tissue
extracellular vesicles
lipoaspirate
mesenchymal stromal cells
miRNAs
microfragmentation
osteoarthritis
proteomics
regenerative medicine
Journal
Journal of clinical medicine
ISSN: 2077-0383
Titre abrégé: J Clin Med
Pays: Switzerland
ID NLM: 101606588
Informations de publication
Date de publication:
15 Apr 2022
15 Apr 2022
Historique:
received:
27
01
2022
revised:
01
04
2022
accepted:
13
04
2022
entrez:
23
4
2022
pubmed:
24
4
2022
medline:
24
4
2022
Statut:
epublish
Résumé
The use of microfragmented adipose tissue (µFAT) for the treatment of musculoskeletal disorders, especially osteoarthritis (OA), is gaining popularity, following positive results reported in recent case series and clinical trials. Although these outcomes were postulated to rely on paracrine signals, to date, a thorough fingerprint of released molecules is largely missing. The purpose of this study was to first characterize both structure and cell content of unprocessed lipoaspirate (LA) and µFAT, and further identify and frame the array of signaling factors in the context of OA disease, by means of high throughput qRT-PCR for extracellular-vesicle (EV) embedded miRNAs and proteomics for tissue and secreted factors. Cell count showed reduction of blood cells in µFAT, confirmed by histological and flow cytometry analyses, that also showed a conserved presence of structural, endothelial and stromal components and pericytes. In the secretome, 376 and 381 EV-miRNAs in LA and µFAT, respectively, were identified. In particular, most abundant and µFAT upregulated EV-miRNAs were mainly recapitulating those already reported as ASC-EVs-specific, with crucial roles in cartilage protection and M2 macrophage polarization, while only a scarce presence of those related to blood cells emerged. Furthermore, secretome proteomic analysis revealed reduction in µFAT of acute phase factors driving OA progression. Taken together, these results suggest that processing of LA into µFAT allows for removal of blood elements and maintenance of tissue structure and stromal cell populations, and possibly the increase of OA-protective molecular features. Thus, microfragmentation represents a safe and efficient method for the application of adipose tissue properties in the frame of musculoskeletal disorders.
Identifiants
pubmed: 35456324
pii: jcm11082231
doi: 10.3390/jcm11082231
pmc: PMC9026471
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Lipogems SPA
Organisme : Ministero della Salute
ID : Ricerca Corrente
Références
Curr Stem Cell Rep. 2016;2:304-312
pubmed: 27547712
Arthritis Rheum. 2011 Feb;63(2):391-400
pubmed: 21279996
Nat Med. 2011 Nov 06;17(12):1674-9
pubmed: 22057346
Stem Cells Transl Med. 2017 Jun;6(6):1445-1451
pubmed: 28452204
Cytotechnology. 2006 May;51(1):39-44
pubmed: 19002893
Cytotherapy. 2013 Jun;15(6):641-8
pubmed: 23570660
Osteoarthritis Cartilage. 2007 May;15(5):516-23
pubmed: 17157039
Nucleic Acids Res. 2015 Jul 1;43(W1):W566-70
pubmed: 25969447
Inflammation. 2017 Jun;40(3):995-1005
pubmed: 28303416
J Cell Physiol. 2019 Apr;234(4):5044-5055
pubmed: 30187478
Cell Stem Cell. 2008 Sep 11;3(3):229-30
pubmed: 18786406
Biomed Res Int. 2019 Jun 13;2019:2045915
pubmed: 31312654
J Rheumatol. 1997 Feb;24(2):365-71
pubmed: 9034998
Cells. 2021 Jun 01;10(6):
pubmed: 34206010
Thromb Haemost. 2016 Jan;115(2):311-23
pubmed: 26333874
J Orthop Traumatol. 2018 Aug 20;19(1):3
pubmed: 30128934
Mol Ther Nucleic Acids. 2016 Sep 27;5(9):e368
pubmed: 27673564
Methods Mol Biol. 2012;822:261-72
pubmed: 22144205
J Plast Reconstr Aesthet Surg. 2013 Sep;66(9):1271-8
pubmed: 23732072
Plast Reconstr Surg. 2006 Sep;118(3 Suppl):108S-120S
pubmed: 16936550
Biochem Soc Trans. 2021 Apr 30;49(2):1013-1026
pubmed: 33843993
BMC Genomics. 2013 May 10;14:319
pubmed: 23663360
Genes (Basel). 2019 Dec 17;10(12):
pubmed: 31861180
Cell Transplant. 2013;22(11):2063-77
pubmed: 23051701
Semin Arthritis Rheum. 1995 Oct;25(2):75-86
pubmed: 8578314
Front Cell Neurosci. 2017 Jun 16;11:169
pubmed: 28670268
Regen Med. 2015;10(6):729-43
pubmed: 25565145
Mol Med Rep. 2018 Jul;18(1):502-508
pubmed: 29749497
Arthritis Res Ther. 2019 Jun 13;21(1):146
pubmed: 31196179
Ann Rheum Dis. 2019 Feb;78(2):270-277
pubmed: 30504444
JCI Insight. 2018 Sep 6;3(17):
pubmed: 30185670
Proteomics. 2015 Apr;15(8):1453-6
pubmed: 25644178
Exp Ther Med. 2014 Jul;8(1):255-259
pubmed: 24944631
Cells. 2019 Sep 24;8(10):
pubmed: 31554344
J Tissue Eng Regen Med. 2018 Jan;12(1):e261-e274
pubmed: 28084666
J Thromb Haemost. 2003 Dec;1(12):2510-5
pubmed: 14675085
J Zhejiang Univ Sci B. 2005 Nov;6(11):1045-56
pubmed: 16252337
BMC Musculoskelet Disord. 2019 Apr 9;20(1):151
pubmed: 30961569
Int J Mol Sci. 2021 Mar 23;22(6):
pubmed: 33806897
Int J Mol Sci. 2020 Feb 26;21(5):
pubmed: 32111031
Int J Mol Sci. 2019 Mar 15;20(6):
pubmed: 30884774
Cytometry A. 2016 Feb;89(2):184-95
pubmed: 25857288
Arthroscopy. 2017 Mar;33(3):659-670.e1
pubmed: 28012636
Genomics Proteomics Bioinformatics. 2015 Feb;13(1):17-24
pubmed: 25724326
Arthritis Rheum. 2013 Apr;65(4):981-92
pubmed: 23400684
Mol Cell Proteomics. 2014 Sep;13(9):2513-26
pubmed: 24942700
Stem Cell Res. 2013 Sep;11(2):834-44
pubmed: 23811540
J Cell Biochem. 2019 Aug;120(8):12775-12784
pubmed: 30854734
Nat Methods. 2009 May;6(5):359-62
pubmed: 19377485
Cell Transplant. 2019 Dec;28(12):1709-1720
pubmed: 31565996
Arthritis Res Ther. 2014 Feb 27;16(1):R58
pubmed: 24572376
Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489
pubmed: 33237286
Pharmacol Rev. 2010 Dec;62(4):726-59
pubmed: 21079042
Cell Transplant. 2016;25(6):1043-56
pubmed: 26395761
F1000Res. 2020 May 4;9:
pubmed: 32419923
Stem Cell Res Ther. 2020 Apr 28;11(1):165
pubmed: 32345351
J Cell Biochem. 2006 Aug 1;98(5):1076-84
pubmed: 16619257
Cells. 2021 Apr 30;10(5):
pubmed: 33946524