Insect Cells for High-Yield Production of SARS-CoV-2 Spike Protein: Building a Virosome-Based COVID-19 Vaccine Candidate.
IC-BEVS
protein production
spike protein
virosomes
Journal
Pharmaceutics
ISSN: 1999-4923
Titre abrégé: Pharmaceutics
Pays: Switzerland
ID NLM: 101534003
Informations de publication
Date de publication:
13 Apr 2022
13 Apr 2022
Historique:
received:
10
03
2022
revised:
30
03
2022
accepted:
11
04
2022
entrez:
23
4
2022
pubmed:
24
4
2022
medline:
24
4
2022
Statut:
epublish
Résumé
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) homotrimeric spike (S) protein is responsible for mediating host cell entry by binding to the angiotensin-converting enzyme 2 (ACE2) receptor, thus being a key viral antigen to target in a coronavirus disease 19 (COVID-19) vaccine. Despite the availability of COVID-19 vaccines, low vaccine coverage as well as unvaccinated and immune compromised subjects are contributing to the emergence of SARS-CoV-2 variants of concern. Therefore, continued development of novel and/or updated vaccines is essential for protecting against such new variants. In this study, we developed a scalable bioprocess using the insect cells-baculovirus expression vector system (IC-BEVS) to produce high-quality S protein, stabilized in its pre-fusion conformation, for inclusion in a virosome-based COVID-19 vaccine candidate. By exploring different bioprocess engineering strategies (i.e., signal peptides, baculovirus transfer vectors, cell lines, infection strategies and formulation buffers), we were able to obtain ~4 mg/L of purified S protein, which, to the best of our knowledge, is the highest value achieved to date using insect cells. In addition, the insect cell-derived S protein exhibited glycan processing similar to mammalian cells and mid-term stability upon storage (up to 90 days at -80 and 4 °C or after 5 freeze-thaw cycles). Noteworthy, antigenicity of S protein, either as single antigen or displayed on the surface of virosomes, was confirmed by ELISA, with binding of ACE2 receptor, pan-SARS antibody CR3022 and neutralizing antibodies to the various epitope clusters on the S protein. Binding capacity was also maintained on virosomes-S stored at 4 °C for 1 month. This work demonstrates the potential of using IC-BEVS to produce the highly glycosylated and complex S protein, without compromising its integrity and antigenicity, to be included in a virosome-based COVID-19 vaccine candidate.
Identifiants
pubmed: 35456687
pii: pharmaceutics14040854
doi: 10.3390/pharmaceutics14040854
pmc: PMC9031128
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : European Union
ID : 730964
Organisme : Fundação para a Ciência e Tecnologia
ID : UIDB/04462/2020
Organisme : Fundação para a Ciência e Tecnologia
ID : UIDP/04462/2020
Organisme : Fundação para a Ciência e Tecnologia
ID : IF/01704/2014
Organisme : Fundação para a Ciência e Tecnologia
ID : EXPL/BBB-BIO/1541/2013
Organisme : Fundação para a Ciência e Tecnologia
ID : IF/01704/2014/CP1229/CT0001
Organisme : Fundação para a Ciência e Tecnologia
ID : SFRH/BD/138937/2018
Références
ACS Omega. 2020 Dec 21;6(1):85-102
pubmed: 33458462
Nat Med. 2020 Jul;26(7):1033-1036
pubmed: 32398876
Vaccine. 2009 Jul 16;27(33):4381-7
pubmed: 19450630
Vaccine. 2014 Sep 22;32(42):5496-502
pubmed: 25131727
Science. 2020 Nov 27;370(6520):1089-1094
pubmed: 33082295
mBio. 2021 Oct 26;12(5):e0181321
pubmed: 34634927
J Gen Virol. 2015 Jan;96(Pt 1):6-23
pubmed: 25246703
J Biotechnol. 2005 Oct 17;120(1):72-82
pubmed: 16023241
Front Immunol. 2020 Dec 23;11:602256
pubmed: 33424848
Science. 2020 Mar 13;367(6483):1260-1263
pubmed: 32075877
NPJ Vaccines. 2020 Jan 31;5:9
pubmed: 32025340
Biotechniques. 2003 Feb;34(2):260-2, 264
pubmed: 12613247
Expert Rev Vaccines. 2007 Oct;6(5):711-21
pubmed: 17931152
N Engl J Med. 2020 Feb 20;382(8):727-733
pubmed: 31978945
J Virol Methods. 2009 Jul;159(1):69-80
pubmed: 19442848
Expert Rev Vaccines. 2008 Oct;7(8):1141-50
pubmed: 18844588
BMJ. 2021 Feb 1;372:n296
pubmed: 33526412
Nat Struct Mol Biol. 2020 Oct;27(10):934-941
pubmed: 32737467
NPJ Vaccines. 2020 May 18;5(1):41
pubmed: 32435515
Cell Host Microbe. 2021 Mar 10;29(3):327-333
pubmed: 33705704
Biologicals. 2015 Sep;43(5):298-306
pubmed: 26144595
Science. 2020 May 8;368(6491):630-633
pubmed: 32245784
Pharm Res. 2011 Apr;28(4):920-33
pubmed: 20972611
Expert Rev Vaccines. 2013 Jul;12(7):779-91
pubmed: 23885823
Acta Crystallogr F Struct Biol Commun. 2015 Oct;71(Pt 10):1359-64
pubmed: 26457531
J Biotechnol. 2021 Jan 20;326:21-27
pubmed: 33301853
Curr Drug Targets. 2007 Oct;8(10):1116-25
pubmed: 17979671
Nat Microbiol. 2020 Apr;5(4):562-569
pubmed: 32094589
J Mol Med (Berl). 2021 Aug;99(8):1023-1031
pubmed: 34023935
Biotechnol Bioeng. 2019 Nov;116(11):2803-2814
pubmed: 31317525
Clin Transl Immunology. 2021 Apr 05;10(4):e1269
pubmed: 33841880
Transplantation. 1964 Nov;2:685-94
pubmed: 14224649
Methods Mol Biol. 2007;368:39-57
pubmed: 18080461
Vaccines (Basel). 2020 Oct 07;8(4):
pubmed: 33036359
Science. 2020 Jul 17;369(6501):330-333
pubmed: 32366695
J Chem Phys. 2013 Jun 28;138(24):245101
pubmed: 23822280
Sci Rep. 2022 Mar 10;12(1):3884
pubmed: 35273217
Biochemistry. 2009 Nov 24;48(46):11084-96
pubmed: 19817484
Science. 2020 Aug 7;369(6504):643-650
pubmed: 32540902
Protein Expr Purif. 2020 Oct;174:105686
pubmed: 32504802
Biotechnol Bioeng. 2021 Jun;118(6):2202-2219
pubmed: 33624859