Simulation and Experiment of the Trapping Trajectory for Janus Particles in Linearly Polarized Optical Traps.
Janus particles
T-matrix method
controllable rotation
optical trapping
Journal
Micromachines
ISSN: 2072-666X
Titre abrégé: Micromachines (Basel)
Pays: Switzerland
ID NLM: 101640903
Informations de publication
Date de publication:
13 Apr 2022
13 Apr 2022
Historique:
received:
28
03
2022
revised:
10
04
2022
accepted:
12
04
2022
entrez:
23
4
2022
pubmed:
24
4
2022
medline:
24
4
2022
Statut:
epublish
Résumé
The highly focused laser beam is capable of confining micro-sized particle in its focus. This is widely known as optical trapping. The Janus particle is composed of two hemispheres with different refractive indexes. In a linearly polarized optical trap, the Janus particle tends to align itself to an orientation where the interface of the two hemispheres is parallel to the laser propagation as well as the polarization direction. This enables a controllable approach that rotates the trapped particle with fine accuracy and could be used in partial measurement. However, due to the complexity of the interaction of the optical field and refractive index distribution, the trapping trajectory of the Janus particle in the linearly polarized optical trap is still uncovered. In this paper, we focus on the dynamic trapping process and the steady position and orientation of the Janus particle in the optical trap from both simulation and experimental aspects. The trapping process recorded by a high speed camera coincides with the simulation result calculated using the
Identifiants
pubmed: 35457912
pii: mi13040608
doi: 10.3390/mi13040608
pmc: PMC9031658
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : National Key Research & Development Program
ID : 2019YFB2005601
Organisme : General Program of NSFC
ID : 52075383
Organisme : Major scientific research instrument development project of NSFC
ID : 61927808
Références
Opt Express. 2022 Feb 14;30(4):5121-5130
pubmed: 35209481
Opt Express. 2021 Aug 16;29(17):26894-26908
pubmed: 34615115
Opt Express. 2010 Aug 2;18(16):16702-14
pubmed: 20721060
Nat Commun. 2021 Nov 26;12(1):6922
pubmed: 34836958
Nano Lett. 2020 Oct 14;20(10):7177-7185
pubmed: 32935992
ACS Photonics. 2019 May 15;6(5):1255-1265
pubmed: 31119185
Chem Rev. 2013 Jul 10;113(7):5194-261
pubmed: 23557169
Opt Express. 2021 Aug 2;29(16):25377-25387
pubmed: 34614870
ACS Nano. 2016 Dec 27;10(12):11505-11510
pubmed: 27966892
Opt Lett. 1986 May 1;11(5):288
pubmed: 19730608
Opt Express. 2019 Sep 30;27(20):27459-27476
pubmed: 31684512
Light Sci Appl. 2021 May 17;10(1):102
pubmed: 33994544
Soft Matter. 2008 Mar 20;4(4):663-668
pubmed: 32907169
J Opt Soc Am A Opt Image Sci Vis. 2021 May 1;38(5):616-627
pubmed: 33983266
Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):10894-10899
pubmed: 28973906
Opt Express. 2012 Jul 2;20(14):14928-37
pubmed: 22772187
Opt Express. 2018 Mar 19;26(6):6499-6506
pubmed: 29609338
J Am Chem Soc. 2006 Jul 26;128(29):9408-12
pubmed: 16848476
Phys Rev Lett. 2004 May 14;92(19):190801
pubmed: 15169392
Opt Express. 2012 Jun 4;20(12):12987-96
pubmed: 22714326