Continuous Nanoprecipitation of Polycaprolactone in Additively Manufactured Micromixers.
3D printing
continuous process
micromixer
nanoparticles
ouzo effect
polycaprolactone
Journal
Polymers
ISSN: 2073-4360
Titre abrégé: Polymers (Basel)
Pays: Switzerland
ID NLM: 101545357
Informations de publication
Date de publication:
07 Apr 2022
07 Apr 2022
Historique:
received:
14
02
2022
revised:
25
03
2022
accepted:
04
04
2022
entrez:
23
4
2022
pubmed:
24
4
2022
medline:
24
4
2022
Statut:
epublish
Résumé
The polymeric ouzo effect is an energy-efficient and robust method to create nanoparticles with biologically degradable polymers. Usually, a discontinuous or semi-continuous process is employed due to its low technical effort and the fact that the amount of dispersions needed in a laboratory is relatively small. However, the number of particles produced in this method is not enough to make this process economically feasible. Therefore, it is necessary to improve the productivity of the process and create a controllable and robust continuous process with the potential to control parameters, such as the particle size or surface properties. In this study, nanoparticles were formulated from polycaprolactone (PCL) in a continuous process using additively manufactured micromixers. The main goal was to be able to exert control on the particle parameters in terms of size and zeta potential. The results showed that particle size could be adjusted in the range of 130 to 465 nm by using different flow rates of the organic and aqueous phase and varying concentrations of PCL dissolved in the organic phase. Particle surface charge was successfully shifted from a slightly negative potential of -14.1 mV to a negative, positive, or neutral value applying the appropriate surfactant. In summary, a continuous process of nanoprecipitation not only improves the cost of the method, but furthermore increases the control over the particle's parameters.
Identifiants
pubmed: 35458259
pii: polym14081509
doi: 10.3390/polym14081509
pmc: PMC9032806
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Macromol Biosci. 2007 Jul 9;7(7):883-96
pubmed: 17595680
Adv Healthc Mater. 2014 Dec;3(12):2032-9
pubmed: 25263074
Nat Commun. 2019 Dec 2;10(1):5496
pubmed: 31792220
Int J Pharm. 2019 Jun 10;564:273-280
pubmed: 31009696
Polymers (Basel). 2017 Oct 13;9(10):
pubmed: 30965809
J Pharm Sci. 2014 Jun;103(6):1839-50
pubmed: 24737658
Antibiotics (Basel). 2020 Dec 11;9(12):
pubmed: 33322526
Langmuir. 2018 Feb 20;34(7):2531-2542
pubmed: 29356546
Small. 2019 Jan;15(2):e1804326
pubmed: 30548194
Heliyon. 2019 Mar 07;5(3):e01305
pubmed: 31016258
Langmuir. 2013 Jul 16;29(28):8845-55
pubmed: 23777243
Pharmaceutics. 2020 May 07;12(5):
pubmed: 32392726
Drug Deliv Transl Res. 2018 Dec;8(6):1790-1796
pubmed: 28828703
Biomaterials. 2018 Apr;162:34-46
pubmed: 29432987
Beilstein J Org Chem. 2013 May 16;9:951-9
pubmed: 23766811
Front Bioeng Biotechnol. 2019 Dec 17;7:423
pubmed: 31921826
ACS Omega. 2018 Jul 31;3(7):7663-7672
pubmed: 30221237
Int J Pharm. 2017 Oct 30;532(1):66-81
pubmed: 28801107
Polymers (Basel). 2020 May 19;12(5):
pubmed: 32438541
ACS Cent Sci. 2021 Feb 24;7(2):212-218
pubmed: 33655058
Micromachines (Basel). 2020 Nov 28;11(12):
pubmed: 33260732
Pharm Res. 2017 Sep;34(9):1773-1783
pubmed: 28527126
Beilstein J Nanotechnol. 2014 Oct 29;5:1905-17
pubmed: 25383302
Angew Chem Int Ed Engl. 2014 Jul 1;53(27):6910-3
pubmed: 24862553
Adv Colloid Interface Sci. 2011 Apr 14;163(2):90-122
pubmed: 21376297
Macromol Biosci. 2008 Dec 8;8(12):1135-43
pubmed: 18698581
J Colloid Interface Sci. 2008 Jun 15;322(2):505-15
pubmed: 18402975
Adv Drug Deliv Rev. 2014 May;71:86-97
pubmed: 24384372
Eur J Pharm Biopharm. 2015 Aug;94:436-49
pubmed: 26143368
J Transl Med. 2019 Jun 14;17(1):200
pubmed: 31200738
Beilstein J Nanotechnol. 2014 Dec 15;5:2403-12
pubmed: 25671136