Investigation of XLPE Cable Insulation Using Electrical, Thermal and Mechanical Properties, and Aging Level Adopting Machine Learning Techniques.

LIBS PCA XLPE aging diffusion coefficient machine learning neural networks trap depth

Journal

Polymers
ISSN: 2073-4360
Titre abrégé: Polymers (Basel)
Pays: Switzerland
ID NLM: 101545357

Informations de publication

Date de publication:
15 Apr 2022
Historique:
received: 19 03 2022
revised: 05 04 2022
accepted: 13 04 2022
entrez: 23 4 2022
pubmed: 24 4 2022
medline: 24 4 2022
Statut: epublish

Résumé

Hydrothermal and chemical aging tests on a 230 kV cross-linked polyethylene (XLPE) insulation cable were carried out in the present study to evaluate the degradation and aging levels qualitatively. The samples were subjected to water aging at a temperature of 80 °C, and in an aqueous ionic solution of CuSO

Identifiants

pubmed: 35458363
pii: polym14081614
doi: 10.3390/polym14081614
pmc: PMC9033087
pii:
doi:

Types de publication

Journal Article

Langues

eng

Références

Appl Spectrosc. 2011 Mar;65(3):307-14
pubmed: 21352651
Materials (Basel). 2019 Mar 05;12(5):
pubmed: 30841492
Molecules. 2020 Sep 10;25(18):
pubmed: 32927806
Polymers (Basel). 2020 Dec 24;13(1):
pubmed: 33374277

Auteurs

Priya Selvamany (P)

Division of High Voltage Engineering, Department of Electrical and Electronics Engineering, College of Engineering, Guindy Campus, Anna University, Chennai 600025, India.

Gowri Sree Varadarajan (GS)

Division of High Voltage Engineering, Department of Electrical and Electronics Engineering, College of Engineering, Guindy Campus, Anna University, Chennai 600025, India.

Naresh Chillu (N)

Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.

Ramanujam Sarathi (R)

Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.

Classifications MeSH