Low-Dose CT Image Post-Processing Based on Learn-Type Sparse Transform.


Journal

Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366

Informations de publication

Date de publication:
09 Apr 2022
Historique:
received: 31 01 2022
revised: 05 04 2022
accepted: 05 04 2022
entrez: 23 4 2022
pubmed: 24 4 2022
medline: 27 4 2022
Statut: epublish

Résumé

As a detection method, X-ray Computed Tomography (CT) technology has the advantages of clear imaging, short detection time, and low detection cost. This makes it more widely used in clinical disease screening, detection, and disease tracking. This study exploits the ability of sparse representation to learn sparse transformations of information and combines it with image decomposition theory. The structural information of low-dose CT images is separated from noise and artifact information, and the sparse expression of sparse transformation is used to improve the imaging effect. In this paper, two different learned sparse transformations are used. The first covers more organizational information about the scanned object. The other can cover more noise artifacts. Both methods can improve the ability to learn sparse transformations to express various image information. Experimental results show that the algorithm is effective.

Identifiants

pubmed: 35458868
pii: s22082883
doi: 10.3390/s22082883
pmc: PMC9031828
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Sichuan Science and Technology Program
ID : 2021YFQ0003

Références

IEEE Trans Med Imaging. 2018 Jun;37(6):1498-1510
pubmed: 29870377
Biomed Opt Express. 2018 Nov 13;9(12):6222-6236
pubmed: 31065424
IEEE Trans Med Imaging. 2006 Oct;25(10):1272-83
pubmed: 17024831
Radiology. 2003 Nov;229(2):575-80
pubmed: 14526095
Med Phys. 2017 Mar;44(3):1168-1185
pubmed: 28303644
Radiology. 2005 Jul;236(1):318-25
pubmed: 15987983
IEEE Trans Image Process. 2005 Oct;14(10):1570-82
pubmed: 16238062
IEEE Trans Med Imaging. 2012 Apr;31(4):907-23
pubmed: 22027367
AJR Am J Roentgenol. 2002 Nov;179(5):1107-13
pubmed: 12388482
Med Phys. 2014 Jan;41(1):011901
pubmed: 24387509
Opt Express. 2020 Nov 23;28(24):35469-35482
pubmed: 33379660
Phys Med Biol. 2014 Jun 21;59(12):2997-3017
pubmed: 24842150
Sensors (Basel). 2021 Nov 14;21(22):
pubmed: 34833646
Nature. 2004 Sep 23;431(7007):391
pubmed: 15385978
Comput Methods Programs Biomed. 2020 Jul;190:105344
pubmed: 32032805
Biomed Opt Express. 2017 Jan 09;8(2):679-694
pubmed: 28270976
Nature. 1996 Jun 13;381(6583):607-9
pubmed: 8637596
Med Phys. 2017 Oct;44(10):e360-e375
pubmed: 29027238
IEEE Trans Med Imaging. 2012 Sep;31(9):1682-97
pubmed: 22542666
Radiology. 2004 Apr;231(1):169-74
pubmed: 15068946
IEEE Trans Med Imaging. 2016 Apr;35(4):1090-8
pubmed: 26685227
Sensors (Basel). 2021 Nov 09;21(22):
pubmed: 34833523
Phys Med Biol. 2012 May 7;57(9):2667-88
pubmed: 22504130

Auteurs

Wenfeng Zheng (W)

School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China.

Bo Yang (B)

School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China.

Ye Xiao (Y)

School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China.

Jiawei Tian (J)

School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China.

Shan Liu (S)

School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China.

Lirong Yin (L)

Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Humans Magnetic Resonance Imaging Phantoms, Imaging Infant, Newborn Signal-To-Noise Ratio
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature
Cephalometry Humans Anatomic Landmarks Software Internet

Classifications MeSH